76,277 research outputs found

    Using Answer Set Programming for pattern mining

    Get PDF
    Serial pattern mining consists in extracting the frequent sequential patterns from a unique sequence of itemsets. This paper explores the ability of a declarative language, such as Answer Set Programming (ASP), to solve this issue efficiently. We propose several ASP implementations of the frequent sequential pattern mining task: a non-incremental and an incremental resolution. The results show that the incremental resolution is more efficient than the non-incremental one, but both ASP programs are less efficient than dedicated algorithms. Nonetheless, this approach can be seen as a first step toward a generic framework for sequential pattern mining with constraints.Comment: Intelligence Artificielle Fondamentale (2014

    An efficient parallel method for mining frequent closed sequential patterns

    Get PDF
    Mining frequent closed sequential pattern (FCSPs) has attracted a great deal of research attention, because it is an important task in sequences mining. In recently, many studies have focused on mining frequent closed sequential patterns because, such patterns have proved to be more efficient and compact than frequent sequential patterns. Information can be fully extracted from frequent closed sequential patterns. In this paper, we propose an efficient parallel approach called parallel dynamic bit vector frequent closed sequential patterns (pDBV-FCSP) using multi-core processor architecture for mining FCSPs from large databases. The pDBV-FCSP divides the search space to reduce the required storage space and performs closure checking of prefix sequences early to reduce execution time for mining frequent closed sequential patterns. This approach overcomes the problems of parallel mining such as overhead of communication, synchronization, and data replication. It also solves the load balance issues of the workload between the processors with a dynamic mechanism that re-distributes the work, when some processes are out of work to minimize the idle CPU time.Web of Science5174021739

    SPMLS: An Efficient Sequential Pattern Mining Algorithm with candidate Generation and Frequency Testing

    Get PDF
    India. Abstract- Sequential pattern mining is a fundamental and essential field of data mining because of its extensive scope of applications spanning from the forecasting the user shopping patterns, and scientific discoveries. The objective is to discover frequently appeared sequential patterns in given set of sequences. Now-a-days, many studies have contributed to the efficiency of sequential pattern mining algorithms. Most existing algorithms have verified to be effective, however, when mining long frequent sequences in database, these algorithms do not work well. In this paper, we propose an efficient pattern mining algorithm, SPMLS, Sequential Pattern Mining on Long Sequences for mining long sequential patterns in a given database. SPMLS takes up an iterative process of candidate-generation which is followed by frequency-testing in two phases, event-wise and sequence-wise. Event-wise phase presents a new candidate pruning approach which improves the efficiency of the mining process. Sequence-wise phase integrates considerations of intra-event and inter-event constraints. Simulations are carried out on both synthetic and real datasets to evaluate the performance of SPMLS

    Efficient algorithms for mining clickstream patterns using pseudo-IDLists

    Get PDF
    Sequential pattern mining is an important task in data mining. Its subproblem, clickstream pattern mining, is starting to attract more research due to the growth of the Internet and the need to analyze online customer behaviors. To date, only few works are dedicately proposed for the problem of mining clickstream patterns. Although one approach is to use the general algorithms for sequential pattern mining, those algorithms’ performance may suffer and the resources needed are more than would be necessary with a dedicated method for mining clickstreams. In this paper, we present pseudo-IDList, a novel data structure that is more suitable for clickstream pattern mining. Based on this structure, a vertical format algorithm named CUP (Clickstream pattern mining Using Pseudo-IDList) is proposed. Furthermore, we propose a pruning heuristic named DUB (Dynamic intersection Upper Bound) to improve our proposed algorithm. Four real-life clickstream databases are used for the experiments and the results show that our proposed methods are effective and efficient regarding runtimes and memory consumption. © 2020 Elsevier B.V.Vietnam National Foundation for Science and Technology Development (NAFOSTED)National Foundation for Science & Technology Development (NAFOSTED) [02/2019/TN

    Frequent Pattern Comparative Analysis of Apriori and FLAG Matrix

    Get PDF
    Abstract: Data mining is the computational process of discovering patterns in large data sets involving methods at the intersection of artificial intelligence, machine learning, statistics, and systems. The overall goal of the data mining process is to extract information from a data set and transform it into an understandable structure for further use. In this paper we are proposed to find the frequent sequential patterns in a large uncertain database. For the finding of frequent pattern we are using Flag Matrix approach. The Flag Matrix approach is efficient and more flexible for finding the frequent pattern. By using this approach we can reduce the time complexity for finding frequent patterns

    Multivariate sequential contrast pattern mining and prediction models for critical care clinical informatics

    Full text link
    University of Technology Sydney. Faculty of Engineering and Information Technology.Data mining and knowledge discovery involves efficient search and discovery of patterns in data that are able to describe the underlying complex structure and properties of the corresponding system. To be of practical use, the discovered patterns need to be novel, informative and interpretable. Large-scale unstructured biomedical databases such as electronic health records (EHRs) tend to exacerbate the problem of discovering interesting and useful patterns. Typically, patients in intensive care units (ICUs) require constant monitoring of vital signs. To this purpose, significant quantities of patient data, coupled with waveform signals are gathered from biosensors and clinical information systems. Subsequently, clinicians face an enormous challenge in the assimilation and interpretation of large volumes of unstructured, multidimensional, noisy and dynamically fluctuating patient data. The availability of de-identified ICU datasets like the MIMIC-II (Multiparameter Intelligent Monitoring in Intensive Care) databases provide an opportunity to advance medical care, by benchmarking algorithms that capture subtle patterns associated with specific medical conditions. Such patterns are able to provide fresh insights into disease dynamics over long time scales. In this research, we focus on the extraction of computational physiological markers, in the form of relevant medical episodes, event sequences and distinguishing sequential patterns. These interesting patterns known as sequential contrast patterns are combined with patient clinical features to develop powerful clinical prediction models. Later, the clinical models are used to predict critical ICU events, pertaining to numerous forms of hemodynamic instabilities causing acute hypotension, multiple organ failures, and septic shock events. In the process, we employ novel sequential pattern mining methodologies for the structured analysis of large-scale ICU datasets. The reported algorithms use a discretised representation such as symbolic aggregate approximation for the analysis of physiological time series data. Thus, symbolic sequences are used to abstract physiological signals, facilitating the development of efficient sequential contrast mining algorithms to extract high risk patterns and then risk stratify patient populations, based on specific clinical inclusion criteria. Chapter 2 thoroughly reviews the pattern mining research literature relating to frequent sequential patterns, emerging and contrast patterns, and temporal patterns along with their applications in clinical informatics. In Chapter 3, we incorporate a contrast pattern mining algorithm to extract informative sequential contrast patterns from hemodynamic data, for the prediction of critical care events like Acute Hypotension Episodes (AHEs). The proposed technique extracts a set of distinguishing sequential patterns to predict the occurrence of an AHE in a future time window, following the passage of a user-defined gap interval. The method demonstrates that sequential contrast patterns are useful as potential physiological biomarkers for building optimal patient risk stratification systems and for further clinical investigation of interesting patterns in critical care patients. Chapter 4 reports a generic two stage sequential patterns based classification framework, which is used to classify critical patient events including hypotension and patient mortality, using contrast patterns. Here, extracted sequential patterns undergo transformation to construct binary valued and frequency based feature vectors for developing critical care classification models. Chapter 5 proposes a novel machine learning approach using sequential contrast patterns for the early prediction of septic shock. The approach combines highly informative sequential patterns extracted from multiple physiological variables and captures the interactions among these patterns via Coupled Hidden Markov Models (CHMM). Our results demonstrate a strong competitive accuracy in the predictions, especially when the interactions between the multiple physiological variables are accounted for using multivariate coupled sequential models. The novelty of the approach stems from the integration of sequence-based physiological pattern markers with the sequential CHMM to learn dynamic physiological behavior as well as from the coupling of such patterns to build powerful risk stratification models for septic shock patients. All of the described methods have been tested and bench-marked using numerous real world critical care datasets from the MIMIC-II database. The results from these experiments show that multivariate sequential contrast patterns based coupled models are highly effective and are able to improve the state-of-the-art in the design of patient risk prediction systems in critical care settings

    A Subsequence Interleaving Model for Sequential Pattern Mining

    Get PDF
    Recent sequential pattern mining methods have used the minimum description length (MDL) principle to define an encoding scheme which describes an algorithm for mining the most compressing patterns in a database. We present a novel subsequence interleaving model based on a probabilistic model of the sequence database, which allows us to search for the most compressing set of patterns without designing a specific encoding scheme. Our proposed algorithm is able to efficiently mine the most relevant sequential patterns and rank them using an associated measure of interestingness. The efficient inference in our model is a direct result of our use of a structural expectation-maximization framework, in which the expectation-step takes the form of a submodular optimization problem subject to a coverage constraint. We show on both synthetic and real world datasets that our model mines a set of sequential patterns with low spuriousness and redundancy, high interpretability and usefulness in real-world applications. Furthermore, we demonstrate that the quality of the patterns from our approach is comparable to, if not better than, existing state of the art sequential pattern mining algorithms.Comment: 10 pages in KDD 2016: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Minin
    corecore