16,069 research outputs found

    An efficient approach for human motion data mining based on curves matching

    Get PDF
    In this paper, we present a novel and efficient approach to retrieve human motion capture data as used in data-driven computer games, animated movies and special effects in the aim of finding a specific motion. From the kinematic chain model, the human motion capture data is transformed to a spatial-temporal invariance representation called the motion feature representation, in which each segment of kinematic chain model is represented by an angle between itself and the root segment. We treat the human motion as a cluster of curves of angle. In the aim of finding a human motion capture data in a very large database, we propose a novel lower bounding distance called LB_Keogh_Lowe to speed up similarity search. In order to reduce the computational cost, we employ techniques to simplify the curves length of both the envelopes curves and the query data. The similarity between two human motions is measured by applying the constrained Dynamic Time Warping. We carry out an experimental analysis with various real motion capture dataset. The results demonstrate the efficiency of our approach in the context of the human motion capture data and the potentiality to apply it in others contexts of the time-series data retrieval.SimAction projec

    Automatic Action Annotation in Weakly Labeled Videos

    Full text link
    Manual spatio-temporal annotation of human action in videos is laborious, requires several annotators and contains human biases. In this paper, we present a weakly supervised approach to automatically obtain spatio-temporal annotations of an actor in action videos. We first obtain a large number of action proposals in each video. To capture a few most representative action proposals in each video and evade processing thousands of them, we rank them using optical flow and saliency in a 3D-MRF based framework and select a few proposals using MAP based proposal subset selection method. We demonstrate that this ranking preserves the high quality action proposals. Several such proposals are generated for each video of the same action. Our next challenge is to iteratively select one proposal from each video so that all proposals are globally consistent. We formulate this as Generalized Maximum Clique Graph problem using shape, global and fine grained similarity of proposals across the videos. The output of our method is the most action representative proposals from each video. Our method can also annotate multiple instances of the same action in a video. We have validated our approach on three challenging action datasets: UCF Sport, sub-JHMDB and THUMOS'13 and have obtained promising results compared to several baseline methods. Moreover, on UCF Sports, we demonstrate that action classifiers trained on these automatically obtained spatio-temporal annotations have comparable performance to the classifiers trained on ground truth annotation

    Unsupervised Action Proposal Ranking through Proposal Recombination

    Full text link
    Recently, action proposal methods have played an important role in action recognition tasks, as they reduce the search space dramatically. Most unsupervised action proposal methods tend to generate hundreds of action proposals which include many noisy, inconsistent, and unranked action proposals, while supervised action proposal methods take advantage of predefined object detectors (e.g., human detector) to refine and score the action proposals, but they require thousands of manual annotations to train. Given the action proposals in a video, the goal of the proposed work is to generate a few better action proposals that are ranked properly. In our approach, we first divide action proposal into sub-proposal and then use Dynamic Programming based graph optimization scheme to select the optimal combinations of sub-proposals from different proposals and assign each new proposal a score. We propose a new unsupervised image-based actioness detector that leverages web images and employs it as one of the node scores in our graph formulation. Moreover, we capture motion information by estimating the number of motion contours within each action proposal patch. The proposed method is an unsupervised method that neither needs bounding box annotations nor video level labels, which is desirable with the current explosion of large-scale action datasets. Our approach is generic and does not depend on a specific action proposal method. We evaluate our approach on several publicly available trimmed and un-trimmed datasets and obtain better performance compared to several proposal ranking methods. In addition, we demonstrate that properly ranked proposals produce significantly better action detection as compared to state-of-the-art proposal based methods
    corecore