1,338 research outputs found

    Multicast Mobility in Mobile IP Version 6 (MIPv6) : Problem Statement and Brief Survey

    Get PDF
    Publisher PD

    A Graph Theoretic Perspective on Internet Topology Mapping

    Get PDF
    Understanding the topological characteristics of the Internet is an important research issue as the Internet grows with no central authority. Internet topology mapping studies help better understand the structure and dynamics of the Internet backbone. Knowing the underlying topology, researchers can better develop new protocols and services or fine-tune existing ones. Subnet-level Internet topology measurement studies involve three stages: topology collection, topology construction, and topology analysis. Each of these stages contains challenging tasks, especially when large-scale backbone topologies of millions of nodes are studied. In this dissertation, I first discuss issues in subnet-level Internet topology mapping and review state-of-the-art approaches to handle them. I propose a novel graph data indexing approach to to efficiently process large scale topology data. I then conduct an experimental study to understand how the responsiveness of routers has changed over the last decade and how it differs based on the probing mechanism. I then propose an efficient unresponsive resolution approach by incorporating our structural graph indexing technique. Finally, I introduce Cheleby, an integrated Internet topology mapping system. Cheleby first dynamically probes observed subnetworks using a team of PlanetLab nodes around the world to obtain comprehensive backbone topologies. Then, it utilizes efficient algorithms to resolve subnets, IP aliases, and unresponsive routers in the collected data sets to construct comprehensive subnet-level topologies. Sample topologies are provided at http://cheleby.cse.unr.edu

    Architectural and mobility management designs in internet-based infrastructure wireless mesh networks

    Get PDF
    Wireless mesh networks (WMNs) have recently emerged to be a cost-effective solution to support large-scale wireless Internet access. They have numerous ap- plications, such as broadband Internet access, building automation, and intelligent transportation systems. One research challenge for Internet-based WMNs is to design efficient mobility management techniques for mobile users to achieve seamless roam- ing. Mobility management includes handoff management and location management. The objective of this research is to design new handoff and location management techniques for Internet-based infrastructure WMNs. Handoff management enables a wireless network to maintain active connections as mobile users move into new service areas. Previous solutions on handoff manage- ment in infrastructure WMNs mainly focus on intra-gateway mobility. New handoff issues involved in inter-gateway mobility in WMNs have not been properly addressed. Hence, a new architectural design is proposed to facilitate inter-gateway handoff man- agement in infrastructure WMNs. The proposed architecture is designed to specifi- cally address the special handoff design challenges in Internet-based WMNs. It can facilitate parallel executions of handoffs from multiple layers, in conjunction with a data caching mechanism which guarantees minimum packet loss during handoffs. Based on the proposed architecture, a Quality of Service (QoS) handoff mechanism is also proposed to achieve QoS requirements for both handoff and existing traffic before and after handoffs in the inter-gateway WMN environment. Location management in wireless networks serves the purpose of tracking mobile users and locating them prior to establishing new communications. Existing location management solutions proposed for single-hop wireless networks cannot be directly applied to Internet-based WMNs. Hence, a dynamic location management framework in Internet-based WMNs is proposed that can guarantee the location management performance and also minimize the protocol overhead. In addition, a novel resilient location area design in Internet-based WMNs is also proposed. The formation of the location areas can adapt to the changes of both paging load and service load so that the tradeoff between paging overhead and mobile device power consumption can be balanced, and at the same time, the required QoS performance of existing traffic is maintained. Therefore, together with the proposed handoff management design, efficient mobility management can be realized in Internet-based infrastructure WMNs

    VANET addressing scheme incorporating geographical information in standard IPv6 header

    Get PDF

    Enabling the web of things: facilitating deployment, discovery and resource access to IoT objects using embedded web services

    Get PDF
    Today, the IETF Constrained Application Protocol (CoAP) is being standardised. CoAP takes the internet of things to the next level: it enables the implementation of RESTful web services on embedded devices, thus enabling the construction of an easily accessible web of things. However, before tiny objects can make themselves available through embedded web services, several manual configuration steps are still needed to integrate a sensor network within an existing networking environment. In this paper, we describe a novel self-organisation solution to facilitate the deployment of constrained networks and enable the discovery, end-to-end connectivity and service usage of these newly deployed sensor nodes. By using embedded web service technology, the need of other protocols on these resource constrained devices is avoided. It allows automatic hierarchical discovery of CoAP servers, resulting in a browsable hierarchy of CoAP servers, which can be accessed both over CoAP and hypertext transfer protocol

    Enabling the web of things: facilitating deployment, discovery and resource access to IoT objects using embedded web services

    Get PDF
    Today, the IETF Constrained Application Protocol (CoAP) is being standardised. CoAP takes the internet of things to the next level: it enables the implementation of RESTful web services on embedded devices, thus enabling the construction of an easily accessible web of things. However, before tiny objects can make themselves available through embedded web services, several manual configuration steps are still needed to integrate a sensor network within an existing networking environment. In this paper, we describe a novel self-organisation solution to facilitate the deployment of constrained networks and enable the discovery, end-to-end connectivity and service usage of these newly deployed sensor nodes. By using embedded web service technology, the need of other protocols on these resource constrained devices is avoided. It allows automatic hierarchical discovery of CoAP servers, resulting in a browsable hierarchy of CoAP servers, which can be accessed both over CoAP and hypertext transfer protocol.The research leading to these results has received funding from the European Union’s Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 258885 (SPITFIRE project), from the iMinds ICON project O’CareCloudS, from a VLIR PhD grant to Isam Ishaq and through an FWO pos tdoc research grant for Eli De Poorter
    • …
    corecore