9,042 research outputs found

    Liquid chromatography-tandem mass spectrometry - Application in the clinical laboratory

    Get PDF
    This review provides a concise survey of liquid chromatography tandem mass spectrometry (LCTMS) as an emerging technology in clinical chemistry. The combination of two mass spectrometers with an interposed collision cell characterizes LCTMS as an analytical technology on its own and not just as a more specific detector for HPLC compared with conventional techniques. In LCTMS, liquid chromatography is rather used for sample preparation but not for complete resolution of compounds of interest. The instrument technology of LCTMS is complex and comparatively expensive; however, in routine use, methods are far more rugged compared to conventional chromatographic techniques and enable highthroughput analyses with very limited manual handling steps. Moreover, compared to both gas chromatographymass spectrometry (GCMS) and conventional HPLC techniques, LCTMS is substantially more versatile with respect to the spectrum of analyzable compounds. For these reasons it is likely that LCTMS will gain far more widespread use in the clinical laboratory than HPLC and GCMS ever did. In this article, the key features of LCTMS are described, method development is explained, typical fields of application are discussed, and personal experiences are related

    An RFID Anti-Collision Algorithm Assisted by Multi-Packet Reception and Retransmission Diversity

    Get PDF
    RFID provides a way to connect the real world to the virtual world. An RFID tag can link a physical entity like a location, an object, a plant, an animal, or a human being to its avatar which belongs to a global information system. For instance, let's consider the case of an RFID tag attached to a tree. The tree is the physical entity. Its avatar can contain the type of the tree, the size of its trunk, and the list of actions a gardener took on it

    A collision-tolerant based anti-collision algorithm for large scale RFID system

    Get PDF
    Tag identification is an important issue in RFID system. Most existing anti-collision algorithms solely focus on reducing collision probability while suffering from vast idle slots. This paper proposes a collision-tolerant dynamic framed slotted Aloha (CE-DFSA) algorithm which attempts to identify multiple tags in a slot to reduce the total identification time in the process of identification. In CE-DFSA, tags are allocated with orthogonal Walsh Sequence (WS) so that multiple tags can be identified in a time slot without spreading the spectrum. Simulation results show that the proposed algorithm considerably accelerates the tag identification process with improved efficiency compared with existing anti-collision algorithms

    A New Method to Address Unmet Needs for Extracting Individual Cell Migration Features from a Large Number of Cells Embedded in 3D Volumes

    Get PDF
    Background: In vitro cell observation has been widely used by biologists and pharmacologists for screening molecule-induced effects on cancer cells. Computer-assisted time-lapse microscopy enables automated live cell imaging in vitro, enabling cell behavior characterization through image analysis, in particular regarding cell migration. In this context, 3D cell assays in transparent matrix gels have been developed to provide more realistic in vitro 3D environments for monitoring cell migration (fundamentally different from cell motility behavior observed in 2D), which is related to the spread of cancer and metastases. Methodology/Principal Findings: In this paper we propose an improved automated tracking method that is designed to robustly and individually follow a large number of unlabeled cells observed under phase-contrast microscopy in 3D gels. The method automatically detects and tracks individual cells across a sequence of acquired volumes, using a template matching filtering method that in turn allows for robust detection and mean-shift tracking. The robustness of the method results from detecting and managing the cases where two cell (mean-shift) trackers converge to the same point. The resulting trajectories quantify cell migration through statistical analysis of 3D trajectory descriptors. We manually validated the method and observed efficient cell detection and a low tracking error rate (6%). We also applied the method in a real biological experiment where the pro-migratory effects of hyaluronic acid (HA) were analyzed on brain cancer cells. Using collagen gels with increased HA proportions, we were able to evidence a dose-response effect on cell migration abilities. Conclusions/Significance: The developed method enables biomedical researchers to automatically and robustly quantify the pro- or anti-migratory effects of different experimental conditions on unlabeled cell cultures in a 3D environment. © 2011 Adanja et al.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Fast splitting based tag identification algorithm for anti-collision in UHF RFID System

    Get PDF
    Efficient and effective objects identification using Radio Frequency Identification (RFID) is always a challenge in large scale industrial and commercial applications. Among existing solutions, the tree based splitting scheme has attracted increasing attention because of its high extendibility and feasibility. However, conventional tree splitting algorithms can only solve tag collision with counter value equals to zero and usually result in performance degradation when the number of tags is large. To overcome such drawbacks, we propose a novel tree-based method called Fast Splitting Algorithm based on Consecutive Slot Status detection (FSA-CSS), which includes a fast splitting (FS) mechanism and a shrink mechanism. Specifically, the FS mechanism is used to reduce collisions by increasing commands when the number of consecutive collision is above a threshold. Whereas the shrink mechanism is used to reduce extra idle slots introduced by FS. Simulation results supplemented by prototyping tests show that the proposed FSA-CSS achieves a system throughput of 0.41, outperforming the existing UHF RFID solutions
    • …
    corecore