219 research outputs found

    A lightweight and secure multilayer authentication scheme for wireless body area networks in healthcare system

    Get PDF
    Wireless body area networks (WBANs) have lately been combined with different healthcare equipment to monitor patients' health status and communicate information with their healthcare practitioners. Since healthcare data often contain personal and sensitive information, it is important that healthcare systems have a secure way for users to log in and access resources and services. The lack of security and presence of anonymous communication in WBANs can cause their operational failure. There are other systems in this area, but they are vulnerable to offline identity guessing attacks, impersonation attacks in sensor nodes, and spoofing attacks in hub node. Therefore, this study provides a secure approach that overcomes these issues while maintaining comparable efficiency in wireless sensor nodes and mobile phones. To conduct the proof of security, the proposed scheme uses the Scyther tool for formal analysis and the Canetti–Krawczyk (CK) model for informal analysis. Furthermore, the suggested technique outperforms the existing symmetric and asymmetric encryption-based schemes

    Multifactor Authentication Key Management System based Security Model Using Effective Handover Tunnel with IPV6

    Get PDF
    In the current modern world, the way of life style is being completely changed due to the emerging technologies which are reflected in treating the patients too. As there is a tremendous growth in population, the existing e-Healthcare methods are not efficient enough to deal with numerous medical data. There is a delay in caring of patient health as communication networks are poor in quality and moreover smart medical resources are lacking and hence severe causes are experienced in the health of patient. However, authentication is considered as a major challenge ensuring that the illegal participants are not permitted to access the medical data present in cloud. To provide security, the authentication factors required are smart card, password and biometrics. Several approaches based on these are authentication factors are presented for e-Health clouds so far. But mostly serious security defects are experienced with these protocols and even the computation and communication overheads are high. Thus, keeping in mind all these challenges, a novel Multifactor Key management-based authentication by Tunnel IPv6 (MKMA- TIPv6) protocol is introduced for e-Health cloud which prevents main attacks like user anonymity, guessing offline password, impersonation, and stealing smart cards. From the analysis, it is proved that this protocol is effective than the existing ones such as Pair Hand (PH), Linear Combination Authentication Protocol (LCAP), Robust Elliptic Curve Cryptography-based Three factor Authentication (RECCTA) in terms storage cost, Encryption time, Decryption time, computation cost, energy consumption and speed. Hence, the proposed MKMA- TIPv6 achieves 35bits of storage cost, 60sec of encryption time, 50sec decryption time, 45sec computational cost, 50% of energy consumption and 80% speed

    On Security Analysis of Recent Password Authentication and Key Agreement Schemes Based on Elliptic Curve Cryptography

    Get PDF
    Secure and efficient mutual authentication and key agreement schemes form the basis for any robust network communication system. Elliptic Curve Cryptography (ECC) has emerged as one of the most successful Public Key Cryptosystem that efficiently meets all the security challenges. Comparison of ECC with other Public Key Cryptosystems (RSA, Rabin, ElGamal) shows that it provides equal level of security for a far smaller bit size, thereby substantially reducing the processing overhead. This makes it suitable for constrained environments like wireless networks and mobile devices as well as for security sensitive applications like electronic banking, financial transactions and smart grids. With the successful implementation of ECC in security applications (e-passports, e-IDs, embedded systems), it is getting widely commercialized. ECC is simple and faster and is therefore emerging as an attractive alternative for providing security in lightweight device, which contributes to its popularity in the present scenario. In this paper, we have analyzed some of the recent password based authentication and key agreement schemes using ECC for various environments. Furthermore, we have carried out security, functionality and performance comparisons of these schemes and found that they are unable to satisfy their claimed security goals

    Lightweight Three-Factor Authentication and Key Agreement Protocol for Internet-Integrated Wireless Sensor Networks

    Get PDF
    Wireless sensor networks (WSNs) will be integrated into the future Internet as one of the components of the Internet of Things, and will become globally addressable by any entity connected to the Internet. Despite the great potential of this integration, it also brings new threats, such as the exposure of sensor nodes to attacks originating from the Internet. In this context, lightweight authentication and key agreement protocols must be in place to enable end-to-end secure communication. Recently, Amin et al. proposed a three-factor mutual authentication protocol for WSNs. However, we identified several flaws in their protocol. We found that their protocol suffers from smart card loss attack where the user identity and password can be guessed using offline brute force techniques. Moreover, the protocol suffers from known session-specific temporary information attack, which leads to the disclosure of session keys in other sessions. Furthermore, the protocol is vulnerable to tracking attack and fails to fulfill user untraceability. To address these deficiencies, we present a lightweight and secure user authentication protocol based on the Rabin cryptosystem, which has the characteristic of computational asymmetry. We conduct a formal verification of our proposed protocol using ProVerif in order to demonstrate that our scheme fulfills the required security properties. We also present a comprehensive heuristic security analysis to show that our protocol is secure against all the possible attacks and provides the desired security features. The results we obtained show that our new protocol is a secure and lightweight solution for authentication and key agreement for Internet-integrated WSNs

    An authentic-based privacy preservation protocol for smart e-healthcare systems in iot

    Get PDF
    © 2013 IEEE. Emerging technologies rapidly change the essential qualities of modern societies in terms of smart environments. To utilize the surrounding environment data, tiny sensing devices and smart gateways are highly involved. It has been used to collect and analyze the real-time data remotely in all Industrial Internet of Things (IIoT). Since the IIoT environment gathers and transmits the data over insecure public networks, a promising solution known as authentication and key agreement (AKA) is preferred to prevent illegal access. In the medical industry, the Internet of Medical Things (IoM) has become an expert application system. It is used to gather and analyze the physiological parameters of patients. To practically examine the medical sensor-nodes, which are imbedded in the patient\u27s body. It would in turn sense the patient medical information using smart portable devices. Since the patient information is so sensitive to reveal other than a medical professional, the security protection and privacy of medical data are becoming a challenging issue of the IoM. Thus, an anonymity-based user authentication protocol is preferred to resolve the privacy preservation issues in the IoM. In this paper, a Secure and Anonymous Biometric Based User Authentication Scheme (SAB-UAS) is proposed to ensure secure communication in healthcare applications. This paper also proves that an adversary cannot impersonate as a legitimate user to illegally access or revoke the smart handheld card. A formal analysis based on the random-oracle model and resource analysis is provided to show security and resource efficiencies in medical application systems. In addition, the proposed scheme takes a part of the performance analysis to show that it has high-security features to build smart healthcare application systems in the IoM. To this end, experimental analysis has been conducted for the analysis of network parameters using NS3 simulator. The collected results have shown superiority in terms of the packet delivery ratio, end-to-end delay, throughput rates, and routing overhead for the proposed SAB-UAS in comparison to other existing protocols

    Survey of main challenges (security and privacy) in wireless body area networks for healthcare applications

    Get PDF
    Abstract Wireless Body Area Network (WBAN) is a new trend in the technology that provides remote mechanism to monitor and collect patient's health record data using wearable sensors. It is widely recognized that a high level of system security and privacy play a key role in protecting these data when being used by the healthcare professionals and during storage to ensure that patient's records are kept safe from intruder's danger. It is therefore of great interest to discuss security and privacy issues in WBANs. In this paper, we reviewed WBAN communication architecture, security and privacy requirements and security threats and the primary challenges in WBANs to these systems based on the latest standards and publications. This paper also covers the state-of-art security measures and research in WBAN. Finally, open areas for future research and enhancements are explored

    A Comprehensive Survey on Signcryption Security Mechanisms in Wireless Body Area Networks

    Get PDF
    WBANs (Wireless Body Area Networks) are frequently depicted as a paradigm shift in healthcare from traditional to modern E-Healthcare. The vitals of the patient signs by the sensors are highly sensitive, secret, and vulnerable to numerous adversarial attacks. Since WBANs is a real-world application of the healthcare system, it’s vital to ensure that the data acquired by the WBANs sensors is secure and not accessible to unauthorized parties or security hazards. As a result, effective signcryption security solutions are required for the WBANs’ success and widespread use. Over the last two decades, researchers have proposed a slew of signcryption security solutions to achieve this goal. The lack of a clear and unified study in terms of signcryption solutions can offer a bird’s eye view of WBANs. Based on the most recent signcryption papers, we analyzed WBAN’s communication architecture, security requirements, and the primary problems in WBANs to meet the aforementioned objectives. This survey also includes the most up to date signcryption security techniques in WBANs environments. By identifying and comparing all available signcryption techniques in the WBANs sector, the study will aid the academic community in understanding security problems and causes. The goal of this survey is to provide a comparative review of the existing signcryption security solutions and to analyze the previously indicated solution given for WBANs. A multi-criteria decision-making approach is used for a comparative examination of the existing signcryption solutions. Furthermore, the survey also highlights some of the public research issues that researchers must face to develop the security features of WBANs.publishedVersio

    Secure Authentication for Remote Patient Monitoring with Wireless Medical Sensor Networks.

    Full text link
    There is broad consensus that remote health monitoring will benefit all stakeholders in the healthcare system and that it has the potential to save billions of dollars. Among the major concerns that are preventing the patients from widely adopting this technology are data privacy and security. Wireless Medical Sensor Networks (MSNs) are the building blocks for remote health monitoring systems. This paper helps to identify the most challenging security issues in the existing authentication protocols for remote patient monitoring and presents a lightweight public-key-based authentication protocol for MSNs. In MSNs, the nodes are classified into sensors that report measurements about the human body and actuators that receive commands from the medical staff and perform actions. Authenticating these commands is a critical security issue, as any alteration may lead to serious consequences. The proposed protocol is based on the Rabin authentication algorithm, which is modified in this paper to improve its signature signing process, making it suitable for delay-sensitive MSN applications. To prove the efficiency of the Rabin algorithm, we implemented the algorithm with different hardware settings using Tmote Sky motes and also programmed the algorithm on an FPGA to evaluate its design and performance. Furthermore, the proposed protocol is implemented and tested using the MIRACL (Multiprecision Integer and Rational Arithmetic C/C++) library. The results show that secure, direct, instant and authenticated commands can be delivered from the medical staff to the MSN nodes

    An Efficient Lightweight Provably Secure Authentication Protocol for Patient Monitoring Using Wireless Medical Sensor Networks

    Get PDF
    The refurbishing of conventional medical network with the wireless medical sensor network has not only amplified the efficiency of the network but concurrently posed different security threats. Previously, Servati and Safkhani had suggested an Internet of Things (IoT) based authentication scheme for the healthcare environment promulgating a secure protocol in resistance to several attacks. However, the analysis demonstrates that the protocol could not withstand user, server, and gateway node impersonation attacks. Further, the protocol fails to resist offline password guessing, ephemeral secret leakage, and gateway-by-passing attacks. To address the security weaknesses, we furnish a lightweight three-factor authentication framework employing the fuzzy extractor technique to safeguard the user’s biometric information. The Burrows-Abadi-Needham (BAN) logic, Real-or-Random (ROR) model, and Scyther simulation tool have been imposed as formal approaches for establishing the validity of the proposed work. The heuristic analysis stipulates that the proposed work is impenetrable to possible threats and offers several security peculiarities like forward secrecy and three-factor security. A thorough analysis of the preexisting works with the proposed ones corroborates the intensified security and efficiency with the reduced computational, communication, and security overheads

    Efficient Anonymous Authenticated Key Agreement Scheme for Wireless Body Area Networks

    Get PDF
    Wireless body area networks (WBANs) are widely used in telemedicine, which can be utilized for real-time patients monitoring and home health-care. The sensor nodes in WBANs collect the client’s physiological data and transmit it to the medical center. However, the clients’ personal information is sensitive and there are many security threats in the extra-body communication. Therefore, the security and privacy of client’s physiological data need to be ensured. Many authentication protocols for WBANs have been proposed in recent years. However, the existing protocols fail to consider the key update phase. In this paper, we propose an efficient authenticated key agreement scheme for WBANs and add the key update phase to enhance the security of the proposed scheme. In addition, session keys are generated during the registration phase and kept secretly, thus reducing computation cost in the authentication phase. The performance analysis demonstrates that our scheme is more efficient than the currently popular related schemes
    • …
    corecore