339 research outputs found

    LTE Coverage Network Planning and Comparison with Different Propagation Models

    Get PDF
    Long Term Evolution (LTE) is the next step (fourth generation) mobile radio communication technology that succeeds the HSPA.3GPP standardization body. LTE is expected to be the most competitive radio technology in the future to provide high-data-rate transmission, low latency, improved service and reduced costs. This paper focuses on one of the basic steps in the LTE network planning, by employing LTE dimensioning process, such as link budget and planning, for uplink and downlink coverage, as well as categorization of simulated received signal strengths. Also, a comparison of different propagation models, used by ATDI software (free-space, Okumura / Hata / David, Stanford University Interim (SUI), COST-231 Hata and ITU -R 525/526 Deygout). The Okumura / Hata / David’s model showed the highest received power sensitivity (-61 dBm, at 3 km separation distance), while COST-231 Hata model shows the lowest sensitivity at same distance (-96 dBm). In this paper, ATDI planning LTE radio planning software platform has been used for estimating the coverage of UTM, which is a dense urban environment

    On analyzing the intra-frame power saving potentials of the IEEE 802.16e downlink vertical mapping

    Get PDF
    Worldwide Interoperability for Microwave Access (WiMAX) is generally considered as a competitive candidate networking technology for the realization of the 4G vision. Among the key factors towards its successful and widespread deployment are the effective support of mobility and the provision of mechanisms for enabling service access at a high quality level in an efficient and cost-effective manner. Nonetheless, this effort should take into account and adequately address strict and severe energy limitations that the mobile devices are currently facing. Power saving constitutes an issue of vital importance, as mobile terminals continue to incorporate more and more functionalities and energy-hungry features in order to support the ever increasing user requirements and demands. The standard employs variations of power saving classes in a frame-to-frame basis, while recent power saving mechanisms proposed in related research literature limit their activity in whole frames, neglecting, thus, the intra-frame power saving capabilities. In this work, the intra-frame energy conservation potentials of the mobile WiMAX network are studied and a novel analytical approach is provided, focusing on the downlink direction where the bandwidth allocation involves idle intervals and dynamic inactivity periods. Specifically, we endeavour to accurately analyse the potential energy conservation capabilities in an intra-frame point of view, applying the well-known simple packing algorithm to distribute the available bandwidth to the various subscribers. Our analytical findings are thoroughly cross-validated via simulation, providing clear insights into the intra-frame energy reduction capabilities

    Tutorial on LTE/LTE-A Cellular Network Dimensioning Using Iterative Statistical Analysis

    Get PDF
    LTE is the fastest growing cellular technology and is expected to increase its footprint in the coming years, as well as progress toward LTE-A. The race among operators to deliver the expected quality of experience to their users is tight and demands sophisticated skills in network planning. Radio network dimensioning (RND) is an essential step in the process of network planning and has been used as a fast, but indicative, approximation of radio site count. RND is a prerequisite to the lengthy process of thorough planning. Moreover, results from RND are used by players in the industry to estimate preplanning costs of deploying and running a network; thus, RND is, as well, a key tool in cellular business modelling. In this work, we present a tutorial on radio network dimensioning, focused on LTE/LTE-A, using an iterative approach to find a balanced design that mediates among the three design requirements: coverage, capacity, and quality. This approach uses a statistical link budget analysis methodology, which jointly accounts for small and large scale fading in the channel, as well as loading due to traffic demand, in the interference calculation. A complete RND manual is thus presented, which is of key importance to operators deploying or upgrading LTE/LTE-A networks for two reasons. It is purely analytical, hence it enables fast results, a prime factor in the race undertaken. Moreover, it captures essential variables affecting network dimensions and manages conflicting targets to ensure user quality of experience, another major criterion in the competition. The described approach is compared to the traditional RND using a commercial LTE network planning tool. The outcome further dismisses the traditional RND for LTE due to unjustified increase in number of radio sites and related cost, and motivates further research in developing more effective and novel RND procedures

    Delay analysis for wireless applications using a multiservice multiqueue processor sharing model

    Get PDF
    The ongoing development of wireless networks supporting multimedia applications requires service providers to efficiently deliver complex Quality of Service (QoS) requirements. The wide range of new applications in these networks significantly increases the difficulty of network design and dimensioning to meet QoS requirements. Medium Access Control (MAC) protocols affect QoS achieved by wireless networks. Research on analysis and performance evaluation is important for the efficient protocol design. As wireless networks feature scarce resources that are simultaneously shared by all users, processor sharing (PS) models were proposed for modelling resource sharing mechanisms in such systems. In this thesis, multi-priority MAC protocols are proposed for handling the various service traffic types. Then, an investigation of multiservice multiqueue PS models is undertaken to analyse the delay for some recently proposed wireless applications. We start with an introduction to MAC protocols for wireless networks which are specified in IEEE standards and then review scheduling algorithms which were proposed to work with the underlying MAC protocols to cooperatively achieve QoS goals. An overview of the relevant literature is given on PS models for performance analysis and evaluation of scheduling algorithms. We propose a multiservice multiqueue PS model using a scheduling scheme in multimedia wireless networks with a comprehensive description of the analytical solution. Firstly, we describe the existing multiqueue processor sharing (MPS) model, which uses a fixed service quantum at each queue, and correct a subtle incongruity in previous solutions presented in the literature. Secondly, a new scheduling framework is proposed to extend the previous MPS model to a general case. This newly proposed analytical approach is based on the idea that the service quantum arranged by a MAC scheduling controller to service data units can be priority-based. We obtain a closed-form expression for the mean delay of each service class in this model. In summary, our new approach simplifies MAC protocols for multimedia applications into an analytical model that includes more complex and realistic traffic models without compromising details of the protocol and significantly reduces the number of MAC headers, thus the overall average delay will be decreased. In response to using the studied multiservice multiqueue PS models, we apply the MPS model to two wireless applications: Push to Talk (PTT) service over GPRS/GSM networks and the Worldwide Interoperability for Microwave Access (WiMAX) networks. We investigate the uplink delay of PTT over traditional GPRS/GSM networks and the uplink delay for WiMAX Subscriber Station scheduler under a priority-based fair scheduling. MAC structures capable of supporting dynamically varying traffic are studied for the networks, especially, with the consideration of implementation issues. The model provides useful insights into the dynamic performance behaviours of GPRS/GSM and WiMAX networks with respect to various system parameters and comprehensive traffic conditions. We then evaluate the model under some different practical traffic scenarios. Through modelling of the operation of wireless access systems, under a variety of multimedia traffic, our analytical approaches provide practical analysis guidelines for wireless network dimensioning
    • 

    corecore