58,902 research outputs found

    Enhancing the quality of video streaming over unreliable wireless networks

    Full text link
    University of Technology Sydney. Faculty of Engineering and Information Technology.Real-time video transmission over unreliable wireless networks remains a serious challenge due to bandwidth limitation and sensitive nature of video bitstreams generated by today’s complex video encoders, e.g., High Efficiency Video Coding (HEVC/H.265). These compressed video bitsreams face packet-drop problem when transmitted over unreliable wireless networks. The effect of packet-drop on the received video quality can be minimised in two ways 1) increasing Quality of Service (QoS) by adopting efficient routing schemes between source and destination, and 2) maintaining video quality at receiver’s side by applying smart and real-time-based Error Concealment (EC) techniques. The QoS refers to the capability of a transmission network to provide better service to selected network traffic. It is a generic term and can be applied to any data transmission network. The term video quality refers to perceived video degradation and is compared to the original video. In this dissertation, we explore the above mentioned two ways and propose a comprehensive solution for real-time video transmission over unreliable networks with the contributions as follows. 1. An efficient, lightweight and real-time EC algorithm is proposed to conceal the missing/lost video frames in H.265 encoded HD videos. The EC algorithm is based on threshold-based distributed Motion Estimation (ME) scheme and utilises only two video frames to estimate the missing one, thus eliminating the need for a large buffer and processing of a bundle of video frames to estimate the missing one. 2. Scalable video coding produces multiple interrelated bitstreams of a single video with different bitrates. For scalable bitstreams, we propose a lightweight and real-time EC algorithm to cover up the effects of missing/lost video frames. Due to complicated nature of scalable video bitstreams, our proposed EC algorithm utilises three previously processed video frames along with their master video frames to perform threshold-based distributed ME to estimate the missing video frames in enhancement layer. 3. We propose a feed-back-based on-demand multipath routing scheme over a multi-hop Wireless Multimedia Sensor Network (WMSN) to ensure the QoS. The feedback helps in deciding the optimum path between sources and destinations and reduces the Packets Loss Ratio (PLR) during the transmissions. On-demand connection assists in saving the available network resources while multipath routing aids in maintaining the connection between sources and destinations. The proposed research makes notable contributions to designing a QoS-supported HD video streaming paradigm to deliver HD videos over unreliable networks and to maintain the received video quality on resource-constrained mobile terminals

    Cross-layer design of multi-hop wireless networks

    Get PDF
    MULTI -hop wireless networks are usually defined as a collection of nodes equipped with radio transmitters, which not only have the capability to communicate each other in a multi-hop fashion, but also to route each others’ data packets. The distributed nature of such networks makes them suitable for a variety of applications where there are no assumed reliable central entities, or controllers, and may significantly improve the scalability issues of conventional single-hop wireless networks. This Ph.D. dissertation mainly investigates two aspects of the research issues related to the efficient multi-hop wireless networks design, namely: (a) network protocols and (b) network management, both in cross-layer design paradigms to ensure the notion of service quality, such as quality of service (QoS) in wireless mesh networks (WMNs) for backhaul applications and quality of information (QoI) in wireless sensor networks (WSNs) for sensing tasks. Throughout the presentation of this Ph.D. dissertation, different network settings are used as illustrative examples, however the proposed algorithms, methodologies, protocols, and models are not restricted in the considered networks, but rather have wide applicability. First, this dissertation proposes a cross-layer design framework integrating a distributed proportional-fair scheduler and a QoS routing algorithm, while using WMNs as an illustrative example. The proposed approach has significant performance gain compared with other network protocols. Second, this dissertation proposes a generic admission control methodology for any packet network, wired and wireless, by modeling the network as a black box, and using a generic mathematical 0. Abstract 3 function and Taylor expansion to capture the admission impact. Third, this dissertation further enhances the previous designs by proposing a negotiation process, to bridge the applications’ service quality demands and the resource management, while using WSNs as an illustrative example. This approach allows the negotiation among different service classes and WSN resource allocations to reach the optimal operational status. Finally, the guarantees of the service quality are extended to the environment of multiple, disconnected, mobile subnetworks, where the question of how to maintain communications using dynamically controlled, unmanned data ferries is investigated

    A Network Coding Approach to Loss Tomography

    Get PDF
    Network tomography aims at inferring internal network characteristics based on measurements at the edge of the network. In loss tomography, in particular, the characteristic of interest is the loss rate of individual links and multicast and/or unicast end-to-end probes are typically used. Independently, recent advances in network coding have shown that there are advantages from allowing intermediate nodes to process and combine, in addition to just forward, packets. In this paper, we study the problem of loss tomography in networks with network coding capabilities. We design a framework for estimating link loss rates, which leverages network coding capabilities, and we show that it improves several aspects of tomography including the identifiability of links, the trade-off between estimation accuracy and bandwidth efficiency, and the complexity of probe path selection. We discuss the cases of inferring link loss rates in a tree topology and in a general topology. In the latter case, the benefits of our approach are even more pronounced compared to standard techniques, but we also face novel challenges, such as dealing with cycles and multiple paths between sources and receivers. Overall, this work makes the connection between active network tomography and network coding

    Quality of Information in Mobile Crowdsensing: Survey and Research Challenges

    Full text link
    Smartphones have become the most pervasive devices in people's lives, and are clearly transforming the way we live and perceive technology. Today's smartphones benefit from almost ubiquitous Internet connectivity and come equipped with a plethora of inexpensive yet powerful embedded sensors, such as accelerometer, gyroscope, microphone, and camera. This unique combination has enabled revolutionary applications based on the mobile crowdsensing paradigm, such as real-time road traffic monitoring, air and noise pollution, crime control, and wildlife monitoring, just to name a few. Differently from prior sensing paradigms, humans are now the primary actors of the sensing process, since they become fundamental in retrieving reliable and up-to-date information about the event being monitored. As humans may behave unreliably or maliciously, assessing and guaranteeing Quality of Information (QoI) becomes more important than ever. In this paper, we provide a new framework for defining and enforcing the QoI in mobile crowdsensing, and analyze in depth the current state-of-the-art on the topic. We also outline novel research challenges, along with possible directions of future work.Comment: To appear in ACM Transactions on Sensor Networks (TOSN
    • …
    corecore