10 research outputs found

    Yield Analysis on Embedded Memory with Redundancy

    Get PDF

    A Holistic Solution for Reliability of 3D Parallel Systems

    Full text link
    As device scaling slows down, emerging technologies such as 3D integration and carbon nanotube field-effect transistors are among the most promising solutions to increase device density and performance. These emerging technologies offer shorter interconnects, higher performance, and lower power. However, higher levels of operating temperatures and current densities project significantly higher failure rates. Moreover, due to the infancy of the manufacturing process, high variation, and defect densities, chip designers are not encouraged to consider these emerging technologies as a stand-alone replacement for Silicon-based transistors. The goal of this dissertation is to introduce new architectural and circuit techniques that can work around high-fault rates in the emerging 3D technologies, improving performance and reliability comparable to Silicon. We propose a new holistic approach to the reliability problem that addresses the necessary aspects of an effective solution such as detection, diagnosis, repair, and prevention synergically for a practical solution. By leveraging 3D fabric layouts, it proposes the underlying architecture to efficiently repair the system in the presence of faults. This thesis presents a fault detection scheme by re-executing instructions on idle identical units that distinguishes between transient and permanent faults while localizing it to the granularity of a pipeline stage. Furthermore, with the use of a dynamic and adaptive reconfiguration policy based on activity factors and temperature variation, we propose a framework that delivers a significant improvement in lifetime management to prevent faults due to aging. Finally, a design framework that can be used for large-scale chip production while mitigating yield and variation failures to bring up Carbon Nano Tube-based technology is presented. The proposed framework is capable of efficiently supporting high-variation technologies by providing protection against manufacturing defects at different granularities: module and pipeline-stage levels.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/168118/1/javadb_1.pd

    Strategies for Optimising DRAM Repair

    Get PDF
    Dynamic Random Access Memories (DRAM) are large complex devices, prone to defects during manufacture. Yield is improved by the provision of redundant structures used to repair these defects. This redundancy is often implemented by the provision of excess memory capacity and programmable address logic allowing the replacement of faulty cells within the memory array. As the memory capacity of DRAM devices has increased, so has the complexity of their redundant structures, introducing increasingly complex restrictions and interdependencies upon the use of this redundant capacity. Currently redundancy analysis algorithms solving the problem of optimally allocating this redundant capacity must be manually customised for each new device. Compromises made to reduce the complexity, and human error, reduce the efficacy of these algorithms. This thesis develops a methodology for automating the customisation of these redundancy analysis algorithms. Included are: a modelling language describing the redundant structures (including the restrictions and interdependencies placed upon their use), algorithms manipulating this model to generate redundancy analysis algorithms, and methods for translating those algorithms into executable code. Finally these concepts are used to develop a prototype software tool capable of generating redundancy analysis algorithms customised for a specified device

    Design Space Exploration and Resource Management of Multi/Many-Core Systems

    Get PDF
    The increasing demand of processing a higher number of applications and related data on computing platforms has resulted in reliance on multi-/many-core chips as they facilitate parallel processing. However, there is a desire for these platforms to be energy-efficient and reliable, and they need to perform secure computations for the interest of the whole community. This book provides perspectives on the aforementioned aspects from leading researchers in terms of state-of-the-art contributions and upcoming trends

    An engineering study of onboard checkout techniques. Task 2: Software

    Get PDF
    Language and executive software requirements for automated onboard checkout of manned space statio

    Adaptive Intelligent Systems for Extreme Environments

    Get PDF
    As embedded processors become powerful, a growing number of embedded systems equipped with artificial intelligence (AI) algorithms have been used in radiation environments to perform routine tasks to reduce radiation risk for human workers. On the one hand, because of the low price, commercial-off-the-shelf devices and components are becoming increasingly popular to make such tasks more affordable. Meanwhile, it also presents new challenges to improve radiation tolerance, the capability to conduct multiple AI tasks and deliver the power efficiency of the embedded systems in harsh environments. There are three aspects of research work that have been completed in this thesis: 1) a fast simulation method for analysis of single event effect (SEE) in integrated circuits, 2) a self-refresh scheme to detect and correct bit-flips in random access memory (RAM), and 3) a hardware AI system with dynamic hardware accelerators and AI models for increasing flexibility and efficiency. The variances of the physical parameters in practical implementation, such as the nature of the particle, linear energy transfer and circuit characteristics, may have a large impact on the final simulation accuracy, which will significantly increase the complexity and cost in the workflow of the transistor level simulation for large-scale circuits. It makes it difficult to conduct SEE simulations for large-scale circuits. Therefore, in the first research work, a new SEE simulation scheme is proposed, to offer a fast and cost-efficient method to evaluate and compare the performance of large-scale circuits which subject to the effects of radiation particles. The advantages of transistor and hardware description language (HDL) simulations are combined here to produce accurate SEE digital error models for rapid error analysis in large-scale circuits. Under the proposed scheme, time-consuming back-end steps are skipped. The SEE analysis for large-scale circuits can be completed in just few hours. In high-radiation environments, bit-flips in RAMs can not only occur but may also be accumulated. However, the typical error mitigation methods can not handle high error rates with low hardware costs. In the second work, an adaptive scheme combined with correcting codes and refreshing techniques is proposed, to correct errors and mitigate error accumulation in extreme radiation environments. This scheme is proposed to continuously refresh the data in RAMs so that errors can not be accumulated. Furthermore, because the proposed design can share the same ports with the user module without changing the timing sequence, it thus can be easily applied to the system where the hardware modules are designed with fixed reading and writing latency. It is a challenge to implement intelligent systems with constrained hardware resources. In the third work, an adaptive hardware resource management system for multiple AI tasks in harsh environments was designed. Inspired by the “refreshing” concept in the second work, we utilise a key feature of FPGAs, partial reconfiguration, to improve the reliability and efficiency of the AI system. More importantly, this feature provides the capability to manage the hardware resources for deep learning acceleration. In the proposed design, the on-chip hardware resources are dynamically managed to improve the flexibility, performance and power efficiency of deep learning inference systems. The deep learning units provided by Xilinx are used to perform multiple AI tasks simultaneously, and the experiments show significant improvements in power efficiency for a wide range of scenarios with different workloads. To further improve the performance of the system, the concept of reconfiguration was further extended. As a result, an adaptive DL software framework was designed. This framework can provide a significant level of adaptability support for various deep learning algorithms on an FPGA-based edge computing platform. To meet the specific accuracy and latency requirements derived from the running applications and operating environments, the platform may dynamically update hardware and software (e.g., processing pipelines) to achieve better cost, power, and processing efficiency compared to the static system

    An Efficient Algorithm for Reconfiguring Shared Spare RRAM

    No full text
    Redundant rows and columns have been used for years to improve the yield of DRAM fabrication. However, finding a memory repair solution has been proved to be an NP-complete problem. This paper presents an efficient algorithm which is able to find a repair solution for shared spare memory arrays if a solution exists. The remarkable performance of the algorithm can be demonstrated by experimental results

    An efficient algorithm for reconfiguring shared spare RRAM

    No full text

    Practical Lightweight Security: Physical Unclonable Functions and the Internet of Things

    Get PDF
    In this work, we examine whether Physical Unclonable Functions (PUFs) can act as lightweight security mechanisms for practical applications in the context of the Internet of Things (IoT). In order to do so, we first discuss what PUFs are, and note that memory-based PUFs seem to fit the best to the framework of the IoT. Then, we consider a number of relevant memory-based PUF designs and their properties, and evaluate their ability to provide security in nominal and adverse conditions. Finally, we present and assess a number of practical PUF-based security protocols for IoT devices and networks, in order to confirm that memory-based PUFs can indeed constitute adequate security mechanisms for the IoT, in a practical and lightweight fashion. More specifically, we first consider what may constitute a PUF, and we redefine PUFs as inanimate physical objects whose characteristics can be exploited in order to obtain a behaviour similar to a highly distinguishable (i.e., “(quite) unique”) mathematical function. We note that PUFs share many characteristics with biometrics, with the main difference being that PUFs are based on the characteristics of inanimate objects, while biometrics are based on the characteristics of humans and other living creatures. We also note that it cannot really be proven that PUFs are unique per instance, but they should be considered to be so, insofar as (human) biometrics are also considered to be unique per instance. We, then, proceed to discuss the role of PUFs as security mechanisms for the IoT, and we determine that memory-based PUFs are particularly suited for this function. We observe that the IoT nowadays consists of heterogeneous devices connected over diverse networks, which include both high-end and resource-constrained devices. Therefore, it is essential that a security solution for the IoT is not only effective, but also highly scalable, flexible, lightweight, and cost-efficient, in order to be considered as practical. To this end, we note that PUFs have been proposed as security mechanisms for the IoT in the related work, but the practicality of the relevant security mechanisms has not been sufficiently studied. We, therefore, examine a number of memory-based PUFs that are implemented using Commercial Off-The-Shelf (COTS) components, and assess their potential to serve as acceptable security mechanisms in the context of the IoT, not only in terms of effectiveness and cost, but also under both nominal and adverse conditions, such as ambient temperature and supply voltage variations, as well as in the presence of (ionising) radiation. In this way, we can determine whether memory-based PUFs are truly suitable to be used in the various application areas of the IoT, which may even involve particularly adverse environments, e.g., in IoT applications involving space modules and operations. Finally, we also explore the potential of memory-based PUFs to serve as adequate security mechanisms for the IoT in practice, by presenting and analysing a number of cryptographic protocols based on these PUFs. In particular, we study how memory-based PUFs can be used for key generation, as well as device identification, and authentication, their role as security mechanisms for current and next-generation IoT devices and networks, and their potential for applications in the space segment of the IoT and in other adverse environments. Additionally, this work also discusses how memory-based PUFs can be utilised for the implementation of lightweight reconfigurable PUFs that allow for advanced security applications. In this way, we are able to confirm that memory-based PUFs can indeed provide flexible, scalable, and efficient security solutions for the IoT, in a practical, lightweight, and inexpensive manner
    corecore