111,452 research outputs found

    Content-based Information Retrieval via Nearest Neighbor Search

    Get PDF
    Content-based information retrieval (CBIR) has attracted significant interest in the past few years. When given a search query, the search engine will compare the query with all the stored information in the database through nearest neighbor search. Finally, the system will return the most similar items. We contribute to the CBIR research the following: firstly, Distance Metric Learning (DML) is studied to improve retrieval accuracy of nearest neighbor search. Additionally, Hash Function Learning (HFL) is considered to accelerate the retrieval process. On one hand, a new local metric learning framework is proposed - Reduced-Rank Local Metric Learning (R2LML). By considering a conical combination of Mahalanobis metrics, the proposed method is able to better capture information like data\u27s similarity and location. A regularization to suppress the noise and avoid over-fitting is also incorporated into the formulation. Based on the different methods to infer the weights for the local metric, we considered two frameworks: Transductive Reduced-Rank Local Metric Learning (T-R2LML), which utilizes transductive learning, while Efficient Reduced-Rank Local Metric Learning (E-R2LML)employs a simpler and faster approximated method. Besides, we study the convergence property of the proposed block coordinate descent algorithms for both our frameworks. The extensive experiments show the superiority of our approaches. On the other hand, *Supervised Hash Learning (*SHL), which could be used in supervised, semi-supervised and unsupervised learning scenarios, was proposed in the dissertation. By considering several codewords which could be learned from the data, the proposed method naturally derives to several Support Vector Machine (SVM) problems. After providing an efficient training algorithm, we also study the theoretical generalization bound of the new hashing framework. In the final experiments, *SHL outperforms many other popular hash function learning methods. Additionally, in order to cope with large data sets, we also conducted experiments running on big data using a parallel computing software package, namely LIBSKYLARK

    A Survey on Metric Learning for Feature Vectors and Structured Data

    Full text link
    The need for appropriate ways to measure the distance or similarity between data is ubiquitous in machine learning, pattern recognition and data mining, but handcrafting such good metrics for specific problems is generally difficult. This has led to the emergence of metric learning, which aims at automatically learning a metric from data and has attracted a lot of interest in machine learning and related fields for the past ten years. This survey paper proposes a systematic review of the metric learning literature, highlighting the pros and cons of each approach. We pay particular attention to Mahalanobis distance metric learning, a well-studied and successful framework, but additionally present a wide range of methods that have recently emerged as powerful alternatives, including nonlinear metric learning, similarity learning and local metric learning. Recent trends and extensions, such as semi-supervised metric learning, metric learning for histogram data and the derivation of generalization guarantees, are also covered. Finally, this survey addresses metric learning for structured data, in particular edit distance learning, and attempts to give an overview of the remaining challenges in metric learning for the years to come.Comment: Technical report, 59 pages. Changes in v2: fixed typos and improved presentation. Changes in v3: fixed typos. Changes in v4: fixed typos and new method

    Person Re-identification by Local Maximal Occurrence Representation and Metric Learning

    Full text link
    Person re-identification is an important technique towards automatic search of a person's presence in a surveillance video. Two fundamental problems are critical for person re-identification, feature representation and metric learning. An effective feature representation should be robust to illumination and viewpoint changes, and a discriminant metric should be learned to match various person images. In this paper, we propose an effective feature representation called Local Maximal Occurrence (LOMO), and a subspace and metric learning method called Cross-view Quadratic Discriminant Analysis (XQDA). The LOMO feature analyzes the horizontal occurrence of local features, and maximizes the occurrence to make a stable representation against viewpoint changes. Besides, to handle illumination variations, we apply the Retinex transform and a scale invariant texture operator. To learn a discriminant metric, we propose to learn a discriminant low dimensional subspace by cross-view quadratic discriminant analysis, and simultaneously, a QDA metric is learned on the derived subspace. We also present a practical computation method for XQDA, as well as its regularization. Experiments on four challenging person re-identification databases, VIPeR, QMUL GRID, CUHK Campus, and CUHK03, show that the proposed method improves the state-of-the-art rank-1 identification rates by 2.2%, 4.88%, 28.91%, and 31.55% on the four databases, respectively.Comment: This paper has been accepted by CVPR 2015. For source codes and extracted features please visit http://www.cbsr.ia.ac.cn/users/scliao/projects/lomo_xqda

    An Efficient Dual Approach to Distance Metric Learning

    Full text link
    Distance metric learning is of fundamental interest in machine learning because the distance metric employed can significantly affect the performance of many learning methods. Quadratic Mahalanobis metric learning is a popular approach to the problem, but typically requires solving a semidefinite programming (SDP) problem, which is computationally expensive. Standard interior-point SDP solvers typically have a complexity of O(D6.5)O(D^{6.5}) (with DD the dimension of input data), and can thus only practically solve problems exhibiting less than a few thousand variables. Since the number of variables is D(D+1)/2D (D+1) / 2 , this implies a limit upon the size of problem that can practically be solved of around a few hundred dimensions. The complexity of the popular quadratic Mahalanobis metric learning approach thus limits the size of problem to which metric learning can be applied. Here we propose a significantly more efficient approach to the metric learning problem based on the Lagrange dual formulation of the problem. The proposed formulation is much simpler to implement, and therefore allows much larger Mahalanobis metric learning problems to be solved. The time complexity of the proposed method is O(D3)O (D ^ 3) , which is significantly lower than that of the SDP approach. Experiments on a variety of datasets demonstrate that the proposed method achieves an accuracy comparable to the state-of-the-art, but is applicable to significantly larger problems. We also show that the proposed method can be applied to solve more general Frobenius-norm regularized SDP problems approximately

    Parametric Local Metric Learning for Nearest Neighbor Classification

    Full text link
    We study the problem of learning local metrics for nearest neighbor classification. Most previous works on local metric learning learn a number of local unrelated metrics. While this "independence" approach delivers an increased flexibility its downside is the considerable risk of overfitting. We present a new parametric local metric learning method in which we learn a smooth metric matrix function over the data manifold. Using an approximation error bound of the metric matrix function we learn local metrics as linear combinations of basis metrics defined on anchor points over different regions of the instance space. We constrain the metric matrix function by imposing on the linear combinations manifold regularization which makes the learned metric matrix function vary smoothly along the geodesics of the data manifold. Our metric learning method has excellent performance both in terms of predictive power and scalability. We experimented with several large-scale classification problems, tens of thousands of instances, and compared it with several state of the art metric learning methods, both global and local, as well as to SVM with automatic kernel selection, all of which it outperforms in a significant manner

    Positive Semidefinite Metric Learning with Boosting

    Full text link
    The learning of appropriate distance metrics is a critical problem in image classification and retrieval. In this work, we propose a boosting-based technique, termed \BoostMetric, for learning a Mahalanobis distance metric. One of the primary difficulties in learning such a metric is to ensure that the Mahalanobis matrix remains positive semidefinite. Semidefinite programming is sometimes used to enforce this constraint, but does not scale well. \BoostMetric is instead based on a key observation that any positive semidefinite matrix can be decomposed into a linear positive combination of trace-one rank-one matrices. \BoostMetric thus uses rank-one positive semidefinite matrices as weak learners within an efficient and scalable boosting-based learning process. The resulting method is easy to implement, does not require tuning, and can accommodate various types of constraints. Experiments on various datasets show that the proposed algorithm compares favorably to those state-of-the-art methods in terms of classification accuracy and running time.Comment: 11 pages, Twenty-Third Annual Conference on Neural Information Processing Systems (NIPS 2009), Vancouver, Canad

    Person re-identification via efficient inference in fully connected CRF

    Full text link
    In this paper, we address the problem of person re-identification problem, i.e., retrieving instances from gallery which are generated by the same person as the given probe image. This is very challenging because the person's appearance usually undergoes significant variations due to changes in illumination, camera angle and view, background clutter, and occlusion over the camera network. In this paper, we assume that the matched gallery images should not only be similar to the probe, but also be similar to each other, under suitable metric. We express this assumption with a fully connected CRF model in which each node corresponds to a gallery and every pair of nodes are connected by an edge. A label variable is associated with each node to indicate whether the corresponding image is from target person. We define unary potential for each node using existing feature calculation and matching techniques, which reflect the similarity between probe and gallery image, and define pairwise potential for each edge in terms of a weighed combination of Gaussian kernels, which encode appearance similarity between pair of gallery images. The specific form of pairwise potential allows us to exploit an efficient inference algorithm to calculate the marginal distribution of each label variable for this dense connected CRF. We show the superiority of our method by applying it to public datasets and comparing with the state of the art.Comment: 7 pages, 4 figure
    • …
    corecore