5,695 research outputs found

    Automatic compositional verification of timed systems

    Get PDF
    Specification and verification of real-time systems are important research topics with crucial applications; however, the so-called state space explosion problem often prevents model checking to be used in practice for large systems. In this work, we present a self-contained toolkit to analyze real-time systems specified using event-recording automata (ERAs), which supports system modeling, animated simulation, and fully automatic compositional verification based on learning techniques. Experimental results show that our tool outperforms the state-of-the-art timed model checker.No Full Tex

    Attack-Resilient Supervisory Control of Discrete-Event Systems

    Full text link
    In this work, we study the problem of supervisory control of discrete-event systems (DES) in the presence of attacks that tamper with inputs and outputs of the plant. We consider a very general system setup as we focus on both deterministic and nondeterministic plants that we model as finite state transducers (FSTs); this also covers the conventional approach to modeling DES as deterministic finite automata. Furthermore, we cover a wide class of attacks that can nondeterministically add, remove, or rewrite a sensing and/or actuation word to any word from predefined regular languages, and show how such attacks can be modeled by nondeterministic FSTs; we also present how the use of FSTs facilitates modeling realistic (and very complex) attacks, as well as provides the foundation for design of attack-resilient supervisory controllers. Specifically, we first consider the supervisory control problem for deterministic plants with attacks (i) only on their sensors, (ii) only on their actuators, and (iii) both on their sensors and actuators. For each case, we develop new conditions for controllability in the presence of attacks, as well as synthesizing algorithms to obtain FST-based description of such attack-resilient supervisors. A derived resilient controller provides a set of all safe control words that can keep the plant work desirably even in the presence of corrupted observation and/or if the control words are subjected to actuation attacks. Then, we extend the controllability theorems and the supervisor synthesizing algorithms to nondeterministic plants that satisfy a nonblocking condition. Finally, we illustrate applicability of our methodology on several examples and numerical case-studies

    Cellular Automata Applications in Shortest Path Problem

    Full text link
    Cellular Automata (CAs) are computational models that can capture the essential features of systems in which global behavior emerges from the collective effect of simple components, which interact locally. During the last decades, CAs have been extensively used for mimicking several natural processes and systems to find fine solutions in many complex hard to solve computer science and engineering problems. Among them, the shortest path problem is one of the most pronounced and highly studied problems that scientists have been trying to tackle by using a plethora of methodologies and even unconventional approaches. The proposed solutions are mainly justified by their ability to provide a correct solution in a better time complexity than the renowned Dijkstra's algorithm. Although there is a wide variety regarding the algorithmic complexity of the algorithms suggested, spanning from simplistic graph traversal algorithms to complex nature inspired and bio-mimicking algorithms, in this chapter we focus on the successful application of CAs to shortest path problem as found in various diverse disciplines like computer science, swarm robotics, computer networks, decision science and biomimicking of biological organisms' behaviour. In particular, an introduction on the first CA-based algorithm tackling the shortest path problem is provided in detail. After the short presentation of shortest path algorithms arriving from the relaxization of the CAs principles, the application of the CA-based shortest path definition on the coordinated motion of swarm robotics is also introduced. Moreover, the CA based application of shortest path finding in computer networks is presented in brief. Finally, a CA that models exactly the behavior of a biological organism, namely the Physarum's behavior, finding the minimum-length path between two points in a labyrinth is given.Comment: To appear in the book: Adamatzky, A (Ed.) Shortest path solvers. From software to wetware. Springer, 201

    Deterministic parallel algorithms for bilinear objective functions

    Full text link
    Many randomized algorithms can be derandomized efficiently using either the method of conditional expectations or probability spaces with low independence. A series of papers, beginning with work by Luby (1988), showed that in many cases these techniques can be combined to give deterministic parallel (NC) algorithms for a variety of combinatorial optimization problems, with low time- and processor-complexity. We extend and generalize a technique of Luby for efficiently handling bilinear objective functions. One noteworthy application is an NC algorithm for maximal independent set. On a graph GG with mm edges and nn vertices, this takes O~(log2n)\tilde O(\log^2 n) time and (m+n)no(1)(m + n) n^{o(1)} processors, nearly matching the best randomized parallel algorithms. Other applications include reduced processor counts for algorithms of Berger (1997) for maximum acyclic subgraph and Gale-Berlekamp switching games. This bilinear factorization also gives better algorithms for problems involving discrepancy. An important application of this is to automata-fooling probability spaces, which are the basis of a notable derandomization technique of Sivakumar (2002). Our method leads to large reduction in processor complexity for a number of derandomization algorithms based on automata-fooling, including set discrepancy and the Johnson-Lindenstrauss Lemma

    What Automated Planning Can Do for Business Process Management

    Get PDF
    Business Process Management (BPM) is a central element of today organizations. Despite over the years its main focus has been the support of processes in highly controlled domains, nowadays many domains of interest to the BPM community are characterized by ever-changing requirements, unpredictable environments and increasing amounts of data that influence the execution of process instances. Under such dynamic conditions, BPM systems must increase their level of automation to provide the reactivity and flexibility necessary for process management. On the other hand, the Artificial Intelligence (AI) community has concentrated its efforts on investigating dynamic domains that involve active control of computational entities and physical devices (e.g., robots, software agents, etc.). In this context, Automated Planning, which is one of the oldest areas in AI, is conceived as a model-based approach to synthesize autonomous behaviours in automated way from a model. In this paper, we discuss how automated planning techniques can be leveraged to enable new levels of automation and support for business processing, and we show some concrete examples of their successful application to the different stages of the BPM life cycle
    corecore