4,245 research outputs found

    Computational complexity of the landscape I

    Get PDF
    We study the computational complexity of the physical problem of finding vacua of string theory which agree with data, such as the cosmological constant, and show that such problems are typically NP hard. In particular, we prove that in the Bousso-Polchinski model, the problem is NP complete. We discuss the issues this raises and the possibility that, even if we were to find compelling evidence that some vacuum of string theory describes our universe, we might never be able to find that vacuum explicitly. In a companion paper, we apply this point of view to the question of how early cosmology might select a vacuum.Comment: JHEP3 Latex, 53 pp, 2 .eps figure

    Large induced subgraphs via triangulations and CMSO

    Full text link
    We obtain an algorithmic meta-theorem for the following optimization problem. Let \phi\ be a Counting Monadic Second Order Logic (CMSO) formula and t be an integer. For a given graph G, the task is to maximize |X| subject to the following: there is a set of vertices F of G, containing X, such that the subgraph G[F] induced by F is of treewidth at most t, and structure (G[F],X) models \phi. Some special cases of this optimization problem are the following generic examples. Each of these cases contains various problems as a special subcase: 1) "Maximum induced subgraph with at most l copies of cycles of length 0 modulo m", where for fixed nonnegative integers m and l, the task is to find a maximum induced subgraph of a given graph with at most l vertex-disjoint cycles of length 0 modulo m. 2) "Minimum \Gamma-deletion", where for a fixed finite set of graphs \Gamma\ containing a planar graph, the task is to find a maximum induced subgraph of a given graph containing no graph from \Gamma\ as a minor. 3) "Independent \Pi-packing", where for a fixed finite set of connected graphs \Pi, the task is to find an induced subgraph G[F] of a given graph G with the maximum number of connected components, such that each connected component of G[F] is isomorphic to some graph from \Pi. We give an algorithm solving the optimization problem on an n-vertex graph G in time O(#pmc n^{t+4} f(t,\phi)), where #pmc is the number of all potential maximal cliques in G and f is a function depending of t and \phi\ only. We also show how a similar running time can be obtained for the weighted version of the problem. Pipelined with known bounds on the number of potential maximal cliques, we deduce that our optimization problem can be solved in time O(1.7347^n) for arbitrary graphs, and in polynomial time for graph classes with polynomial number of minimal separators

    Testing Cluster Structure of Graphs

    Full text link
    We study the problem of recognizing the cluster structure of a graph in the framework of property testing in the bounded degree model. Given a parameter ε\varepsilon, a dd-bounded degree graph is defined to be (k,ϕ)(k, \phi)-clusterable, if it can be partitioned into no more than kk parts, such that the (inner) conductance of the induced subgraph on each part is at least ϕ\phi and the (outer) conductance of each part is at most cd,kε4ϕ2c_{d,k}\varepsilon^4\phi^2, where cd,kc_{d,k} depends only on d,kd,k. Our main result is a sublinear algorithm with the running time O~(npoly(ϕ,k,1/ε))\widetilde{O}(\sqrt{n}\cdot\mathrm{poly}(\phi,k,1/\varepsilon)) that takes as input a graph with maximum degree bounded by dd, parameters kk, ϕ\phi, ε\varepsilon, and with probability at least 23\frac23, accepts the graph if it is (k,ϕ)(k,\phi)-clusterable and rejects the graph if it is ε\varepsilon-far from (k,ϕ)(k, \phi^*)-clusterable for ϕ=cd,kϕ2ε4logn\phi^* = c'_{d,k}\frac{\phi^2 \varepsilon^4}{\log n}, where cd,kc'_{d,k} depends only on d,kd,k. By the lower bound of Ω(n)\Omega(\sqrt{n}) on the number of queries needed for testing graph expansion, which corresponds to k=1k=1 in our problem, our algorithm is asymptotically optimal up to polylogarithmic factors.Comment: Full version of STOC 201

    Survival probability of a diffusing particle in the presence of Poisson-distributed mobile traps

    Full text link
    The problem of a diffusing particle moving among diffusing traps is analyzed in general space dimension d. We consider the case where the traps are initially randomly distributed in space, with uniform density rho, and derive upper and lower bounds for the probability Q(t) (averaged over all particle and trap trajectories) that the particle survives up to time t. We show that, for 1<=d<2, the bounds converge asymptotically to give Q(t)exp(λdtd/2)Q(t) \sim exp(-\lambda_d t^{d/2}) where λd=(2/πd)sin(πd/2)(4πD)d/2ρ\lambda_d = (2/\pi d) sin(\pi d/2) (4\pi D)^{d/2} \rho and D is the diffusion constant of the traps, and that Q(t)exp(4πρDt/lnt)Q(t) \sim exp(- 4\pi\rho D t/ln t) for d=2. For d>2 bounds can still be derived, but they no longer converge for large t. For 1<=d<=2, these asymptotic form are independent of the diffusion constant of the particle. The results are compared with simulation results obtained using a new algorithm [V. Mehra and P. Grassberger, Phys. Rev. E v65 050101 (2002)] which is described in detail. Deviations from the predicted asymptotic forms are found to be large even for very small values of Q(t), indicating slowly decaying corrections whose form is consistent with the bounds. We also present results in d=1 for the case where the trap densities on either side of the particle are different. For this case we can still obtain exact bounds but they no longer converge.Comment: 13 pages, RevTeX4, 6 figures. Figures and references updated; equations corrected; discussion clarifie

    The Quantum PCP Conjecture

    Full text link
    The classical PCP theorem is arguably the most important achievement of classical complexity theory in the past quarter century. In recent years, researchers in quantum computational complexity have tried to identify approaches and develop tools that address the question: does a quantum version of the PCP theorem hold? The story of this study starts with classical complexity and takes unexpected turns providing fascinating vistas on the foundations of quantum mechanics, the global nature of entanglement and its topological properties, quantum error correction, information theory, and much more; it raises questions that touch upon some of the most fundamental issues at the heart of our understanding of quantum mechanics. At this point, the jury is still out as to whether or not such a theorem holds. This survey aims to provide a snapshot of the status in this ongoing story, tailored to a general theory-of-CS audience.Comment: 45 pages, 4 figures, an enhanced version of the SIGACT guest column from Volume 44 Issue 2, June 201
    corecore