55 research outputs found

    Constraint-Driven Fault Diagnosis

    Get PDF
    Constraint-Driven Fault Diagnosis (CDD) is based on the concept of constraint suspension [6], which was proposed as an approach to fault detection and diagnosis. In this chapter, its capabilities are demonstrated by describing how it might be applied to hardware systems. With this idea, a model-based fault diagnosis problem may be considered as a Constraint Satisfaction Problem (CSP) in order to detect any unexpected behavior and Constraint Satisfaction Optimization Problem (COP) constraint optimization problem in order to identify the reason for any unexpected behavior because the parsimony principle is taken into accountMinisterio de Ciencia y Tecnología TIN2015-63502-C3-2-

    Recursive Online Enumeration of All Minimal Unsatisfiable Subsets

    Full text link
    In various areas of computer science, we deal with a set of constraints to be satisfied. If the constraints cannot be satisfied simultaneously, it is desirable to identify the core problems among them. Such cores are called minimal unsatisfiable subsets (MUSes). The more MUSes are identified, the more information about the conflicts among the constraints is obtained. However, a full enumeration of all MUSes is in general intractable due to the large number (even exponential) of possible conflicts. Moreover, to identify MUSes algorithms must test sets of constraints for their simultaneous satisfiabilty. The type of the test depends on the application domains. The complexity of tests can be extremely high especially for domains like temporal logics, model checking, or SMT. In this paper, we propose a recursive algorithm that identifies MUSes in an online manner (i.e., one by one) and can be terminated at any time. The key feature of our algorithm is that it minimizes the number of satisfiability tests and thus speeds up the computation. The algorithm is applicable to an arbitrary constraint domain and its effectiveness demonstrates itself especially in domains with expensive satisfiability checks. We benchmark our algorithm against state of the art algorithm on Boolean and SMT constraint domains and demonstrate that our algorithm really requires less satisfiability tests and consequently finds more MUSes in given time limits

    Navigation System Fault Diagnosis for Underwater Vehicle

    Get PDF
    This paper demonstrates fault diagnosis on unmanned underwater vehicles (UUV) based on analysis of structure of the nonlinear dynamics. Residuals are generated using different approaches in structural analysis followed by statistical change detection. Hypothesis testing thresholds are made signal based to cope with non-ideal properties seen in real data. Detection of both sensor and thruster failures are demonstrated. Isolation is performed using the residual signature of detected faults and the change detection algorithm is used to assess severity of faults by estimating their magnitude. Numerical simulations and sea trial data show results with very favorable balance between detection and false alarm probabilities.(c) IFAC 2014. This is the authors' accepted and refereed manuscript to the article

    Real-Time Detection of Incipient Inter-Turn Short Circuit and Sensor Faults in Permanent Magnet Synchronous Motor Drives Based on Generalized Likelihood Ratio Test and Structural Analysis

    Get PDF
    This paper presents a robust model-based technique to detect multiple faults in permanent magnet synchronous motors (PMSMs), namely inter-turn short circuit (ITSC) and encoder faults. The proposed model is based on a structural analysis, which uses the dynamic mathematical model of a PMSM in an abc frame to evaluate the system’s structural model in matrix form. The just-determined and over-determined parts of the system are separated by a Dulmage–Mendelsohn decomposition tool. Subsequently, the analytical redundant relations obtained using the over-determined part of the system are used to form smaller redundant testable sub-models based on the number of defined fault terms. Furthermore, four structured residuals are designed based on the acquired redundant sub-models to detect measurement faults in the encoder and ITSC faults, which are applied in different levels of each phase winding. The effectiveness of the proposed detection method is validated by an in-house test setup of an inverter-fed PMSM, where ITSC and encoder faults are applied to the system in different time intervals using controllable relays. Finally, a statistical detector, namely a generalized likelihood ratio test algorithm, is implemented in the decision-making diagnostic system resulting in the ability to detect ITSC faults as small as one single short-circuited turn out of 102, i.e., when less than 1% of the PMSM phase winding is short-circuited.publishedVersio

    Real-Time Fault Diagnosis of Permanent Magnet Synchronous Motor and Drive System

    Get PDF
    Permanent Magnet Synchronous Motors (PMSMs) have gained massive popularity in industrial applications such as electric vehicles, robotic systems, and offshore industries due to their merits of efficiency, power density, and controllability. PMSMs working in such applications are constantly exposed to electrical, thermal, and mechanical stresses, resulting in different faults such as electrical, mechanical, and magnetic faults. These faults may lead to efficiency reduction, excessive heat, and even catastrophic system breakdown if not diagnosed in time. Therefore, developing methods for real-time condition monitoring and detection of faults at early stages can substantially lower maintenance costs, downtime of the system, and productivity loss. In this dissertation, condition monitoring and detection of the three most common faults in PMSMs and drive systems, namely inter-turn short circuit, demagnetization, and sensor faults are studied. First, modeling and detection of inter-turn short circuit fault is investigated by proposing one FEM-based model, and one analytical model. In these two models, efforts are made to extract either fault indicators or adjustments for being used in combination with more complex detection methods. Subsequently, a systematic fault diagnosis of PMSM and drive system containing multiple faults based on structural analysis is presented. After implementing structural analysis and obtaining the redundant part of the PMSM and drive system, several sequential residuals are designed and implemented based on the fault terms that appear in each of the redundant sets to detect and isolate the studied faults which are applied at different time intervals. Finally, real-time detection of faults in PMSMs and drive systems by using a powerful statistical signal-processing detector such as generalized likelihood ratio test is investigated. By using generalized likelihood ratio test, a threshold was obtained based on choosing the probability of a false alarm and the probability of detection for each detector based on which decision was made to indicate the presence of the studied faults. To improve the detection and recovery delay time, a recursive cumulative GLRT with an adaptive threshold algorithm is implemented. As a result, a more processed fault indicator is achieved by this recursive algorithm that is compared to an arbitrary threshold, and a decision is made in real-time performance. The experimental results show that the statistical detector is able to efficiently detect all the unexpected faults in the presence of unknown noise and without experiencing any false alarm, proving the effectiveness of this diagnostic approach.publishedVersio

    On the detection of over-constrained subparts of configurations when deforming free-form curves

    Get PDF
    Today, designers use CAD modelers to define and modify NURBS surfaces involved in the design of complex shapes like car bodies or turbine blades. The generated shapes often result from the use of variational modeling techniques where user-specified constraints define the shapes. However, for free-form curve/surfaces, if too much constraints are added to subparts of a configuration, the system will not be solvable even if it is globally well-/under-constrained. When this happens, it is useful to identify locally unsatisfiable subparts of configurations and provide the user feedback for adjustment. Currently, in the domain of geometric constraint solving, techniques are mainly developed for Euler geometries rather than parametric entities like free-form curves/surfaces. In this paper, we apply the Dulmage-Mendelsohn decomposition method to isolate structural over-constrained subparts of configurations. Since structural over-constraints do not necessarily mean unsatisfiable, a Jacobian matrix analysis approach is taken to further detect the inconsistent constraints. Indeed, these numerical methods can be generalized to detect overconstraints on free-form curves. We illustrate our approach on different examples where results show that Gauss elimination, though restricted to linear cases, is more relevant in our context than Dulmage-Mendelsohn decomposition
    corecore