136 research outputs found

    An Efficient Algorithm for Computing High-Quality Paths amid Polygonal Obstacles

    Full text link
    We study a path-planning problem amid a set O\mathcal{O} of obstacles in R2\mathbb{R}^2, in which we wish to compute a short path between two points while also maintaining a high clearance from O\mathcal{O}; the clearance of a point is its distance from a nearest obstacle in O\mathcal{O}. Specifically, the problem asks for a path minimizing the reciprocal of the clearance integrated over the length of the path. We present the first polynomial-time approximation scheme for this problem. Let nn be the total number of obstacle vertices and let ε(0,1]\varepsilon \in (0,1]. Our algorithm computes in time O(n2ε2lognε)O(\frac{n^2}{\varepsilon ^2} \log \frac{n}{\varepsilon}) a path of total cost at most (1+ε)(1+\varepsilon) times the cost of the optimal path.Comment: A preliminary version of this work appear in the Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete Algorithm

    Efficient motion planning for problems lacking optimal substructure

    Full text link
    We consider the motion-planning problem of planning a collision-free path of a robot in the presence of risk zones. The robot is allowed to travel in these zones but is penalized in a super-linear fashion for consecutive accumulative time spent there. We suggest a natural cost function that balances path length and risk-exposure time. Specifically, we consider the discrete setting where we are given a graph, or a roadmap, and we wish to compute the minimal-cost path under this cost function. Interestingly, paths defined using our cost function do not have an optimal substructure. Namely, subpaths of an optimal path are not necessarily optimal. Thus, the Bellman condition is not satisfied and standard graph-search algorithms such as Dijkstra cannot be used. We present a path-finding algorithm, which can be seen as a natural generalization of Dijkstra's algorithm. Our algorithm runs in O((nBn)log(nBn)+nBm)O\left((n_B\cdot n) \log( n_B\cdot n) + n_B\cdot m\right) time, where~nn and mm are the number of vertices and edges of the graph, respectively, and nBn_B is the number of intersections between edges and the boundary of the risk zone. We present simulations on robotic platforms demonstrating both the natural paths produced by our cost function and the computational efficiency of our algorithm

    Geometric Secluded Paths and Planar Satisfiability

    Get PDF
    We consider paths with low exposure to a 2D polygonal domain, i.e., paths which are seen as little as possible; we differentiate between integral exposure (when we care about how long the path sees every point of the domain) and 0/1 exposure (just counting whether a point is seen by the path or not). For the integral exposure, we give a PTAS for finding the minimum-exposure path between two given points in the domain; for the 0/1 version, we prove that in a simple polygon the shortest path has the minimum exposure, while in domains with holes the problem becomes NP-hard. We also highlight connections of the problem to minimum satisfiability and settle hardness of variants of planar min- and max-SAT

    Near-Optimal Min-Sum Motion Planning for Two Square Robots in a Polygonal Environment

    Full text link
    Let WR2\mathcal{W} \subset \mathbb{R}^2 be a planar polygonal environment (i.e., a polygon potentially with holes) with a total of nn vertices, and let A,BA,B be two robots, each modeled as an axis-aligned unit square, that can translate inside W\mathcal{W}. Given source and target placements sA,tA,sB,tBWs_A,t_A,s_B,t_B \in \mathcal{W} of AA and BB, respectively, the goal is to compute a \emph{collision-free motion plan} π\mathbf{\pi}^*, i.e., a motion plan that continuously moves AA from sAs_A to tAt_A and BB from sBs_B to tBt_B so that AA and BB remain inside W\mathcal{W} and do not collide with each other during the motion. Furthermore, if such a plan exists, then we wish to return a plan that minimizes the sum of the lengths of the paths traversed by the robots, π\left|\mathbf{\pi}^*\right|. Given W,sA,tA,sB,tB\mathcal{W}, s_A,t_A,s_B,t_B and a parameter ε>0\varepsilon > 0, we present an n2εO(1)lognn^2\varepsilon^{-O(1)} \log n-time (1+ε)(1+\varepsilon)-approximation algorithm for this problem. We are not aware of any polynomial time algorithm for this problem, nor do we know whether the problem is NP-Hard. Our result is the first polynomial-time (1+ε)(1+\varepsilon)-approximation algorithm for an optimal motion planning problem involving two robots moving in a polygonal environment.Comment: The conference version of the paper is accepted to SODA 202

    Exact Computation of a Manifold Metric, via Lipschitz Embeddings and Shortest Paths on a Graph

    Full text link
    Data-sensitive metrics adapt distances locally based the density of data points with the goal of aligning distances and some notion of similarity. In this paper, we give the first exact algorithm for computing a data-sensitive metric called the nearest neighbor metric. In fact, we prove the surprising result that a previously published 33-approximation is an exact algorithm. The nearest neighbor metric can be viewed as a special case of a density-based distance used in machine learning, or it can be seen as an example of a manifold metric. Previous computational research on such metrics despaired of computing exact distances on account of the apparent difficulty of minimizing over all continuous paths between a pair of points. We leverage the exact computation of the nearest neighbor metric to compute sparse spanners and persistent homology. We also explore the behavior of the metric built from point sets drawn from an underlying distribution and consider the more general case of inputs that are finite collections of path-connected compact sets. The main results connect several classical theories such as the conformal change of Riemannian metrics, the theory of positive definite functions of Schoenberg, and screw function theory of Schoenberg and Von Neumann. We develop novel proof techniques based on the combination of screw functions and Lipschitz extensions that may be of independent interest.Comment: 15 page

    Coverage and Time-optimal Motion Planning for Autonomous Vehicles

    Get PDF
    Autonomous vehicles are rapidly advancing with a variety of applications, such as area surveillance, environment mapping, and intelligent transportation. These applications require coverage and/or time-optimal motion planning, where the major challenges include uncertainties in the environment, motion constraints of vehicles, limited energy resources and potential failures. While dealing with these challenges in various capacities, this dissertation addresses three fundamental motion planning problems: (1) single-robot complete coverage in unknown environment, (2) multi-robot resilient and efficient coverage in unknown environment, and (3) time-optimal risk-aware motion planning for curvature-constrained vehicles. First, the ε* algorithm is developed for online coverage path planning in unknown environment using a single autonomous vehicle. It is computationally efficient, and can generate the desired back-and-forth path with less turns and overlappings. ε* prevents the local extrema problem, thus can guarantee complete coverage. Second, the CARE algorithm is developed which extends ε* for multi-robot resilient and efficient coverage in unknown environment. In case of failures, CARE guarantees complete coverage via dynamic task reallocations of other vehicles, hence provides resilience. Moreover, it reallocates idling vehicles to support others in their tasks, hence improves efficiency. Finally, the T* algorithm is developed to find the time-optimal risk-aware path for curvature-constrained vehicles. We present a novel risk function based on the concept of collision time, and integrate it with the time cost for optimization. The above-mentioned algorithms have been validated via simulations in complex scenarios and/or real experiments, and the results have shown clear advantages over existing popular approaches
    corecore