1,194 research outputs found

    Optimal features for online seizure detection

    No full text

    Data Augmentation for Deep-Learning-Based Electroencephalography

    Get PDF
    Background: Data augmentation (DA) has recently been demonstrated to achieve considerable performance gains for deep learning (DL)—increased accuracy and stability and reduced overfitting. Some electroencephalography (EEG) tasks suffer from low samples-to-features ratio, severely reducing DL effectiveness. DA with DL thus holds transformative promise for EEG processing, possibly like DL revolutionized computer vision, etc. New method: We review trends and approaches to DA for DL in EEG to address: Which DA approaches exist and are common for which EEG tasks? What input features are used? And, what kind of accuracy gain can be expected? Results: DA for DL on EEG begun 5 years ago and is steadily used more. We grouped DA techniques (noise addition, generative adversarial networks, sliding windows, sampling, Fourier transform, recombination of segmentation, and others) and EEG tasks (into seizure detection, sleep stages, motor imagery, mental workload, emotion recognition, motor tasks, and visual tasks). DA efficacy across techniques varied considerably. Noise addition and sliding windows provided the highest accuracy boost; mental workload most benefitted from DA. Sliding window, noise addition, and sampling methods most common for seizure detection, mental workload, and sleep stages, respectively. Comparing with existing methods: Percent of decoding accuracy explained by DA beyond unaugmented accuracy varied between 8% for recombination of segmentation and 36% for noise addition and from 14% for motor imagery to 56% for mental workload—29% on average. Conclusions: DA increasingly used and considerably improved DL decoding accuracy on EEG. Additional publications—if adhering to our reporting guidelines—will facilitate more detailed analysis

    Data Augmentation for Deep-Learning-Based Electroencephalography

    Get PDF
    Background: Data augmentation (DA) has recently been demonstrated to achieve considerable performance gains for deep learning (DL)—increased accuracy and stability and reduced overfitting. Some electroencephalography (EEG) tasks suffer from low samples-to-features ratio, severely reducing DL effectiveness. DA with DL thus holds transformative promise for EEG processing, possibly like DL revolutionized computer vision, etc. New method: We review trends and approaches to DA for DL in EEG to address: Which DA approaches exist and are common for which EEG tasks? What input features are used? And, what kind of accuracy gain can be expected? Results: DA for DL on EEG begun 5 years ago and is steadily used more. We grouped DA techniques (noise addition, generative adversarial networks, sliding windows, sampling, Fourier transform, recombination of segmentation, and others) and EEG tasks (into seizure detection, sleep stages, motor imagery, mental workload, emotion recognition, motor tasks, and visual tasks). DA efficacy across techniques varied considerably. Noise addition and sliding windows provided the highest accuracy boost; mental workload most benefitted from DA. Sliding window, noise addition, and sampling methods most common for seizure detection, mental workload, and sleep stages, respectively. Comparing with existing methods: Percent of decoding accuracy explained by DA beyond unaugmented accuracy varied between 8% for recombination of segmentation and 36% for noise addition and from 14% for motor imagery to 56% for mental workload—29% on average. Conclusions: DA increasingly used and considerably improved DL decoding accuracy on EEG. Additional publications—if adhering to our reporting guidelines—will facilitate more detailed analysis

    Epileptic Seizure Detection And Prediction From Electroencephalogram Using Neuro-Fuzzy Algorithms

    Get PDF
    This dissertation presents innovative approaches based on fuzzy logic in epileptic seizure detection and prediction from Electroencephalogram (EEG). The fuzzy rule-based algorithms were developed with the aim to improve quality of life of epilepsy patients by utilizing intelligent methods. An adaptive fuzzy logic system was developed to detect seizure onset in a patient specific way. Fuzzy if-then rules were developed to mimic the human reasoning and taking advantage of the combination in spatial-temporal domain. Fuzzy c-means clustering technique was utilized for optimizing the membership functions for varying patterns in the feature domain. In addition, application of the adaptive neuro-fuzzy inference system (ANFIS) is presented for efficient classification of several commonly arising artifacts from EEG. Finally, we present a neuro-fuzzy approach of seizure prediction by applying the ANFIS. Patient specific ANFIS classifier was constructed to forecast a seizure followed by postprocessing methods. Three nonlinear seizure predictive features were used to characterize changes prior to seizure. The nonlinear features used in this study were similarity index, phase synchronization, and nonlinear interdependence. The ANFIS classifier was constructed based on these features as inputs. Fuzzy if-then rules were generated by the ANFIS classifier using the complex relationship of feature space provided during training. In this dissertation, the application of the neuro-fuzzy algorithms in epilepsy diagnosis and treatment was demonstrated by applying the methods on different datasets. Several performance measures such as detection delay, sensitivity and specificity were calculated and compared with results reported in literature. The proposed algorithms have potentials to be used in diagnostics and therapeutic applications as they can be implemented in an implantable medical device to detect a seizure, forecast a seizure, and initiate neurostimulation therapy for the purpose of seizure prevention or abortion

    Scalable Digital Architecture of a Liquid State Machine

    Get PDF
    Liquid State Machine (LSM) is an adaptive neural computational model with rich dynamics to process spatio-temporal inputs. These machines are extremely fast in learning because the goal-oriented training is moved to the output layer, unlike conventional recurrent neural networks. The capability to multiplex at the output layer for multiple tasks makes LSM a powerful intelligent engine. These properties are desirable in several machine learning applications such as speech recognition, anomaly detection, user identification etc. Scalable hardware architectures for spatio-temporal signal processing algorithms like LSMs are energy efficient compared to the software implementations. These designs can also naturally adapt to dierent temporal streams of inputs. Early literature shows few behavioral models of LSM. However, they cannot process real time data either due to their hardware complexity or xed design approach. In this thesis, a scalable digital architecture of an LSM is proposed. A key feature of the architecture is a digital liquid that exploits spatial locality and is capable of processing real time data. The quality of the proposed LSM is analyzed using kernel quality, separation property of the liquid and Lyapunov exponent. When realized using TSMC 65nm technology node, the total power dissipation of the liquid layer, with 60 neurons, is 55.7 mW with an area requirement of 2 mm^2. The proposed model is validated for two benchmark. In the case of an epileptic seizure detection an average accuracy of 84% is observed. For user identification/authentication using gait an average accuracy of 98.65% is achieved

    Deep Cellular Recurrent Neural Architecture for Efficient Multidimensional Time-Series Data Processing

    Get PDF
    Efficient processing of time series data is a fundamental yet challenging problem in pattern recognition. Though recent developments in machine learning and deep learning have enabled remarkable improvements in processing large scale datasets in many application domains, most are designed and regulated to handle inputs that are static in time. Many real-world data, such as in biomedical, surveillance and security, financial, manufacturing and engineering applications, are rarely static in time, and demand models able to recognize patterns in both space and time. Current machine learning (ML) and deep learning (DL) models adapted for time series processing tend to grow in complexity and size to accommodate the additional dimensionality of time. Specifically, the biologically inspired learning based models known as artificial neural networks that have shown extraordinary success in pattern recognition, tend to grow prohibitively large and cumbersome in the presence of large scale multi-dimensional time series biomedical data such as EEG. Consequently, this work aims to develop representative ML and DL models for robust and efficient large scale time series processing. First, we design a novel ML pipeline with efficient feature engineering to process a large scale multi-channel scalp EEG dataset for automated detection of epileptic seizures. With the use of a sophisticated yet computationally efficient time-frequency analysis technique known as harmonic wavelet packet transform and an efficient self-similarity computation based on fractal dimension, we achieve state-of-the-art performance for automated seizure detection in EEG data. Subsequently, we investigate the development of a novel efficient deep recurrent learning model for large scale time series processing. For this, we first study the functionality and training of a biologically inspired neural network architecture known as cellular simultaneous recurrent neural network (CSRN). We obtain a generalization of this network for multiple topological image processing tasks and investigate the learning efficacy of the complex cellular architecture using several state-of-the-art training methods. Finally, we develop a novel deep cellular recurrent neural network (CDRNN) architecture based on the biologically inspired distributed processing used in CSRN for processing time series data. The proposed DCRNN leverages the cellular recurrent architecture to promote extensive weight sharing and efficient, individualized, synchronous processing of multi-source time series data. Experiments on a large scale multi-channel scalp EEG, and a machine fault detection dataset show that the proposed DCRNN offers state-of-the-art recognition performance while using substantially fewer trainable recurrent units

    Wearable electroencephalography for long-term monitoring and diagnostic purposes

    Get PDF
    Truly Wearable EEG (WEEG) can be considered as the future of ambulatory EEG units, which are the current standard for long-term EEG monitoring. Replacing these short lifetime, bulky units with long-lasting, miniature and wearable devices that can be easily worn by patients will result in more EEG data being collected for extended monitoring periods. This thesis presents three new fabricated systems, in the form of Application Specific Integrated Circuits (ASICs), to aid the diagnosis of epilepsy and sleep disorders by detecting specific clinically important EEG events on the sensor node, while discarding background activity. The power consumption of the WEEG monitoring device incorporating these systems can be reduced since the transmitter, which is the dominating element in terms of power consumption, will only become active based on the output of these systems. Candidate interictal activity is identified by the developed analog-based interictal spike selection system-on-chip (SoC), using an approximation of the Continuous Wavelet Transform (CWT), as a bandpass filter, and thresholding. The spike selection SoC is fabricated in a 0.35 μm CMOS process and consumes 950 nW. Experimental results reveal that the SoC is able to identify 87% of interictal spikes correctly while only transmitting 45% of the data. Sections of EEG data containing likely ictal activity are detected by an analog seizure selection SoC using the low complexity line length feature. This SoC is fabricated in a 0.18 μm CMOS technology and consumes 1.14 μW. Based on experimental results, the fabricated SoC is able to correctly detect 83% of seizure episodes while transmitting 52% of the overall EEG data. A single-channel analog-based sleep spindle detection SoC is developed to aid the diagnosis of sleep disorders by detecting sleep spindles, which are characteristic events of sleep. The system identifies spindle events by monitoring abrupt changes in the input EEG. An approximation of the median frequency calculation, incorporated as part of the system, allows for non-spindle activity incorrectly identified by the system as sleep spindles to be discarded. The sleep spindle detection SoC is fabricated in a 0.18 μm CMOS technology, consuming only 515 nW. The SoC achieves a sensitivity and specificity of 71.5% and 98% respectively.Open Acces
    corecore