117 research outputs found

    A Low-Complexity SLM PAPR Reduction Scheme for OFDMA

    Get PDF
    In orthogonal frequency division multiplexing (OFDM) systems, selected mapping (SLM) techniques are widely used to minimize the peak to average power ratio (PAPR). The candidate signals are generated in the time domain by linearly mixing the original time-domain transmitted signal with numerous cyclic shift equivalents to reduce the amount of Inverse Fast Fourier Transform (IFFT) operations in typical SLM systems. The weighting factors and number of cyclic shifts, on the other hand, should be carefully chosen to guarantee that the elements of the appropriate frequency domain phase rotation vectors are of equal magnitude. A low-complexity expression is chosen from among these options to create the proposed low-complexity scheme, which only requires one IFFT. In comparison to the existing SLM technique, the new SLM scheme achieves equivalent PAPR reduction performance with significantly less computing complexity. MATLAB tool is used for simulating the proposed work

    On the efficiency of PAPR reduction schemes deployed for DRM systems

    Get PDF
    Digital Radio Mondiale (DRM) is the universally, openly standardized digital broadcasting system for all frequencies including LW, MW, and SW as well as VHF bands. Alongside providing high audio quality to listeners, DRM satisfies technological requirements posed by broadcasters, manufacturers and regulatory authorities and thus bears a great potential for the future of global radio. One of the key issues here concerns green broadcasting. Facing the need for high-power transmitters to cover wide areas, there is room for improvement concerning the power efficiency of DRM-transmitters. A major drawback of DRM is its high peak-to-average power ratio (PAPR) due to the applied transmission technology based on Orthogonal Frequency Division Multiplexing (OFDM), which results in non-linearities in the emitted signal, low power efficiency, and high costs of transmitters. To overcome this, numerous schemes have been investigated for reducing PAPR in OFDM systems. In this paper, we review and analyze various technologies to reduce PAPR providing that the technical feasibility and DRM-specific system architecture and edge conditions regarding the system performance in terms of modulation error rate, compliance with frequency mask, and synchronization efficiency are ensured. All evaluations are carried out with I/Q signals which are monitored in real operation to present the actual performance of proposed PAPR techniques. Subsequently, the capability of the best approach is evaluated via measurements on a DRM test platform, where achieved transmit power gain of 10 dB is shown. According to our evaluation results, PAPR reduction schemes based on active constellation extension followed by a filter prove to be promising towards practical realization of power-efficient transmitters. © 2016, The Author(s)

    A Low-Complexity SLM PAPR Reduction Scheme for OFDMA

    Get PDF
    In orthogonal frequency division multiplexing (OFDM) systems, selected mapping (SLM) techniques are widely used to minimize the peak to average power ratio (PAPR). The candidate signals are generated in the time domain by linearly mixing the original time-domain transmitted signal with numerous cyclic shift equivalents to reduce the amount of Inverse Fast Fourier Transform (IFFT) operations in typical SLM systems. The weighting factors and number of cyclic shifts, on the other hand, should be carefully chosen to guarantee that the elements of the appropriate frequency domain phase rotation vectors are of equal magnitude. A low-complexity expression is chosen from among these options to create the proposed low-complexity scheme, which only requires one IFFT. In comparison to the existing SLM technique, the new SLM scheme achieves equivalent PAPR reduction performance with significantly less computing complexity. MATLAB tool is used for simulating the proposed work

    DCO-OFDM Signals With Derated Power for Visible Light Communications Using an Optimized Adaptive Network-Based Fuzzy Inference System

    Get PDF
    Direct current-biased optical orthogonal frequency division multiplexing (DCO-OFDM) signals used in visible light communications suffer from high peak-to-average-power ratio (PAPR) or cubic metric (CM). It strongly degrades the performance due to the great back-off necessary to avoid the clipping effect in the light-emitting diode. Thus, PAPR and CM reduction techniques become crucial to improve the system performance. In this paper, an adaptive network-based fuzzy inference system (ANFIS) is used to obtain efficient DCO-OFDM signals with a low power envelope profile. First, signals specially designed for DCO-OFDMwith very low CM, as the ones obtained from the raw cubic metric (RCM)-active constellation extension method, are used to train the fuzzy systems in time and frequency domains. Second, after the off-line training, the ANFIS can generate a real-valued signal in a one-shot way with 8.9 dB of RCM reduction from the original real-valued signal, which involves a gain in the input power back off larger than 2.8 dB, an illumination-to-communication conversion efficiency gain of more than 35% and considerable improvements in bit error rate

    PAPR Reduction and Sidelobe Suppression in Cognitive OFDM - A Survey

    Get PDF
    Cognitive radio (CR) is one of the key technology providing a new way to enhance the utilization of available spectrum effectively. The multicarrier modulation (MCM) technique which is widely used is Orthogonal Frequency Division Multiplexing (OFDM) system, is an excellent choice for high data rate application. The main two limitations of this technology is the high peak-to-average power ratio (PAPR) of transmission signal and large spectrum sidelobe. This article describes some of the important PAPR reduction techniques and sidelobe suppression techniques

    PAPR Reduction and Sidelobe Suppression in Cognitive OFDM - A Survey

    Get PDF
    Cognitive radio (CR) is one of the key technology providing a new way to enhance the utilization of available spectrum effectively. The multicarrier modulation (MCM) technique which is widely used is Orthogonal Frequency Division Multiplexing (OFDM) system, is an excellent choice for high data rate application. The main two limitations of this technology is the high peak-to-average power ratio (PAPR) of transmission signal and large spectrum sidelobe. This article describes some of the important PAPR reduction techniques and sidelobe suppression techniques
    corecore