113,257 research outputs found

    ELM regime classification by conformal prediction on an information manifold

    Get PDF
    Characterization and control of plasma instabilities known as edge-localized modes (ELMs) is crucial for the operation of fusion reactors. Recently, machine learning methods have demonstrated good potential in making useful inferences from stochastic fusion data sets. However, traditional classification methods do not offer an inherent estimate of the goodness of their prediction. In this paper, a distance-based conformal predictor classifier integrated with a geometric-probabilistic framework is presented. The first benefit of the approach lies in its comprehensive treatment of highly stochastic fusion data sets, by modeling the measurements with probability distributions in a metric space. This enables calculation of a natural distance measure between probability distributions: the Rao geodesic distance. Second, the predictions are accompanied by estimates of their accuracy and reliability. The method is applied to the classification of regimes characterized by different types of ELMs based on the measurements of global parameters and their error bars. This yields promising success rates and outperforms state-of-the-art automatic techniques for recognizing ELM signatures. The estimates of goodness of the predictions increase the confidence of classification by ELM experts, while allowing more reliable decisions regarding plasma control and at the same time increasing the robustness of the control system

    Monte Carlo-based Noise Compensation in Coil Intensity Corrected Endorectal MRI

    Get PDF
    Background: Prostate cancer is one of the most common forms of cancer found in males making early diagnosis important. Magnetic resonance imaging (MRI) has been useful in visualizing and localizing tumor candidates and with the use of endorectal coils (ERC), the signal-to-noise ratio (SNR) can be improved. The coils introduce intensity inhomogeneities and the surface coil intensity correction built into MRI scanners is used to reduce these inhomogeneities. However, the correction typically performed at the MRI scanner level leads to noise amplification and noise level variations. Methods: In this study, we introduce a new Monte Carlo-based noise compensation approach for coil intensity corrected endorectal MRI which allows for effective noise compensation and preservation of details within the prostate. The approach accounts for the ERC SNR profile via a spatially-adaptive noise model for correcting non-stationary noise variations. Such a method is useful particularly for improving the image quality of coil intensity corrected endorectal MRI data performed at the MRI scanner level and when the original raw data is not available. Results: SNR and contrast-to-noise ratio (CNR) analysis in patient experiments demonstrate an average improvement of 11.7 dB and 11.2 dB respectively over uncorrected endorectal MRI, and provides strong performance when compared to existing approaches. Conclusions: A new noise compensation method was developed for the purpose of improving the quality of coil intensity corrected endorectal MRI data performed at the MRI scanner level. We illustrate that promising noise compensation performance can be achieved for the proposed approach, which is particularly important for processing coil intensity corrected endorectal MRI data performed at the MRI scanner level and when the original raw data is not available.Comment: 23 page

    Big Data and Analysis of Data Transfers for International Research Networks Using NetSage

    Get PDF
    Modern science is increasingly data-driven and collaborative in nature. Many scientific disciplines, including genomics, high-energy physics, astronomy, and atmospheric science, produce petabytes of data that must be shared with collaborators all over the world. The National Science Foundation-supported International Research Network Connection (IRNC) links have been essential to enabling this collaboration, but as data sharing has increased, so has the amount of information being collected to understand network performance. New capabilities to measure and analyze the performance of international wide-area networks are essential to ensure end-users are able to take full advantage of such infrastructure for their big data applications. NetSage is a project to develop a unified, open, privacy-aware network measurement, and visualization service to address the needs of monitoring today's high-speed international research networks. NetSage collects data on both backbone links and exchange points, which can be as much as 1Tb per month. This puts a significant strain on hardware, not only in terms storage needs to hold multi-year historical data, but also in terms of processor and memory needs to analyze the data to understand network behaviors. This paper addresses the basic NetSage architecture, its current data collection and archiving approach, and details the constraints of dealing with this big data problem of handling vast amounts of monitoring data, while providing useful, extensible visualization to end users

    RANS Simulation and Experiments on the Stall Behaviour of a Tailplane Airfoil

    Get PDF
    • …
    corecore