277 research outputs found

    Developing a person guidance module for hospital robots

    Get PDF
    This dissertation describes the design and implementation of the Person Guidance Module (PGM) that enables the IWARD (Intelligent Robot Swarm for attendance, Recognition, Cleaning and delivery) base robot to offer route guidance service to the patients or visitors inside the hospital arena. One of the common problems encountered in huge hospital buildings today is foreigners not being able to find their way around in the hospital. Although there are a variety of guide robots currently existing on the market and offering a wide range of guidance and related activities, they do not fit into the modular concept of the IWARD project. The PGM features a robust and foolproof non-hierarchical sensor fusion approach of an active RFID, stereovision and cricket mote sensor for guiding a patient to the X-ray room, or a visitor to a patient’s ward in every possible scenario in a complex, dynamic and crowded hospital environment. Moreover, the speed of the robot can be adjusted automatically according to the pace of the follower for physical comfort using this system. Furthermore, the module performs these tasks in any unconstructed environment solely from a robot’s onboard perceptual resources in order to limit the hardware installation costs and therefore the indoor setting support. Similar comprehensive solution in one single platform has remained elusive in existing literature. The finished module can be connected to any IWARD base robot using quick-change mechanical connections and standard electrical connections. The PGM module box is equipped with a Gumstix embedded computer for all module computing which is powered up automatically once the module box is inserted into the robot. In line with the general software architecture of the IWARD project, all software modules are developed as Orca2 components and cross-complied for Gumstix’s XScale processor. To support standardized communication between different software components, Internet Communications Engine (Ice) has been used as middleware. Additionally, plug-and-play capabilities have been developed and incorporated so that swarm system is aware at all times of which robot is equipped with PGM. Finally, in several field trials in hospital environments, the person guidance module has shown its suitability for a challenging real-world application as well as the necessary user acceptance

    Sulautettu ohjelmistototeutus reaaliaikaiseen paikannusjärjestelmään

    Get PDF
    Asset tracking often necessitates wireless, radio-frequency identification (RFID). In practice, situations often arise where plain inventory operations are not sufficient, and methods to estimate movement trajectory are needed for making reliable observations, classification and report generation. In this thesis, an embedded software application for an industrial, resource-constrained off-the-shelf RFID reader device in the UHF frequency range is designed and implemented. The software is used to configure the reader and its air-interface operations, accumulate read reports and generate events to be reported over network connections. Integrating location estimation methods to the application facilitates the possibility to make deploying middleware RFID solutions more streamlined and robust while reducing network bandwidth requirements. The result of this thesis is a functional embedded software application running on top of an embedded Linux distribution on an ARM processor. The reader software is used commercially in industrial and logistics applications. Non-linear state estimation features are applied, and their performance is evaluated in empirical experiments.Tavaroiden seuranta edellyttää usein langatonta radiotaajuustunnistustekniikkaa (RFID). Käytännön sovelluksissa tulee monesti tilanteita joissa pelkkä inventointi ei riitä, vaan tarvitaan menetelmiä liikeradan estimointiin luotettavien havaintojen ja luokittelun tekemiseksi sekä raporttien generoimiseksi. Tässä työssä on suunniteltu ja toteutettu sulautettu ohjelmistosovellus teolliseen, resursseiltaan rajoitettuun ja kaupallisesti saatavaan UHF-taajuusalueen RFID-lukijalaitteeseen. Ohjelmistoa käytetään lukijalaitteen ja sen ilmarajapinnan toimintojen konfigurointiin, lukutapahtumien keräämiseen ja raporttien lähettämiseen verkkoyhteyksiä pitkin. Paikkatiedon estimointimenetelmien integroiminen ohjelmistoon mahdollistaa välitason RFID-sovellusten toteuttamisen aiempaa suoraviivaisemin ja luotettavammin, vähentäen samalla vaatimuksia tietoverkon kaistanleveydelle. Työn tuloksena on toimiva sulautettu ohjelmistosovellus, jota ajetaan sulautetussa Linux-käyttöjärjestelmässä ARM-arkkitehtuurilla. Lukijaohjelmistoa käytetään kaupallisesti teollisuuden ja logistiikan sovelluskohteissa. Epälineaarisia estimointiominaisuuksia hyödynnetään, ja niiden toimivuutta arvioidaan empiirisin kokein

    Wireless Localization Systems: Statistical Modeling and Algorithm Design

    Get PDF
    Wireless localization systems are essential for emerging applications that rely on context-awareness, especially in civil, logistic, and security sectors. Accurate localization in indoor environments is still a challenge and triggers a fervent research activity worldwide. The performance of such systems relies on the quality of range measurements gathered by processing wireless signals within the sensors composing the localization system. Such range estimates serve as observations for the target position inference. The quality of range estimates depends on the network intrinsic properties and signal processing techniques. Therefore, the system design and analysis call for the statistical modeling of range information and the algorithm design for ranging, localization and tracking. The main objectives of this thesis are: (i) the derivation of statistical models and (ii) the design of algorithms for different wire- less localization systems, with particular regard to passive and semi-passive systems (i.e., active radar systems, passive radar systems, and radio frequency identification systems). Statistical models for the range information are derived, low-complexity algorithms with soft-decision and hard-decision are proposed, and several wideband localization systems have been analyzed. The research activity has been conducted also within the framework of different projects in collaboration with companies and other universities, and within a one-year-long research period at Massachusetts Institute of Technology, Cambridge, MA, USA. The analysis of system performance, the derived models, and the proposed algorithms are validated considering different case studies in realistic scenarios and also using the results obtained under the aforementioned projects
    corecore