38 research outputs found

    Quadratic Projection Based Feature Extraction with Its Application to Biometric Recognition

    Full text link
    This paper presents a novel quadratic projection based feature extraction framework, where a set of quadratic matrices is learned to distinguish each class from all other classes. We formulate quadratic matrix learning (QML) as a standard semidefinite programming (SDP) problem. However, the con- ventional interior-point SDP solvers do not scale well to the problem of QML for high-dimensional data. To solve the scalability of QML, we develop an efficient algorithm, termed DualQML, based on the Lagrange duality theory, to extract nonlinear features. To evaluate the feasibility and effectiveness of the proposed framework, we conduct extensive experiments on biometric recognition. Experimental results on three representative biometric recogni- tion tasks, including face, palmprint, and ear recognition, demonstrate the superiority of the DualQML-based feature extraction algorithm compared to the current state-of-the-art algorithm

    DESIGN OF COMPACT AND DISCRIMINATIVE DICTIONARIES

    Get PDF
    The objective of this research work is to design compact and discriminative dictionaries for e�ective classi�cation. The motivation stems from the fact that dictionaries inherently contain redundant dictionary atoms. This is because the aim of dictionary learning is reconstruction, not classi�cation. In this thesis, we propose methods to obtain minimum number discriminative dictionary atoms for e�ective classi�cation and also reduced computational time. First, we propose a classi�cation scheme where an example is assigned to a class based on the weight assigned to both maximum projection and minimum reconstruction error. Here, the input data is learned by K-SVD dictionary learning which alternates between sparse coding and dictionary update. For sparse coding, orthogonal matching pursuit (OMP) is used and for dictionary update, singular value decomposition is used. This way of classi�cation though e�ective, still there is a scope to improve dictionary learning by removing redundant atoms because our goal is not reconstruction. In order to remove such redundant atoms, we propose two approaches based on information theory to obtain compact discriminative dictionaries. In the �rst approach, we remove redundant atoms from the dictionary while maintaining discriminative information. Speci�cally, we propose a constraint optimization problem which minimizes the mutual information between optimized dictionary and initial dictionary while maximizing mutual information between class labels and optimized dictionary. This helps to determine information loss between before and after the dictionary optimization. To compute information loss, we use Jensen-Shannon diver- gence with adaptive weights to compare class distributions of each dictionary atom. The advantage of Jensen-Shannon divergence is its computational e�ciency rather than calculating information loss from mutual information

    Discriminant feature pursuit: from statistical learning to informative learning.

    Get PDF
    Lin Dahua.Thesis (M.Phil.)--Chinese University of Hong Kong, 2006.Includes bibliographical references (leaves 233-250).Abstracts in English and Chinese.Abstract --- p.iAcknowledgement --- p.iiiChapter 1 --- Introduction --- p.1Chapter 1.1 --- The Problem We are Facing --- p.1Chapter 1.2 --- Generative vs. Discriminative Models --- p.2Chapter 1.3 --- Statistical Feature Extraction: Success and Challenge --- p.3Chapter 1.4 --- Overview of Our Works --- p.5Chapter 1.4.1 --- New Linear Discriminant Methods: Generalized LDA Formulation and Performance-Driven Sub space Learning --- p.5Chapter 1.4.2 --- Coupled Learning Models: Coupled Space Learning and Inter Modality Recognition --- p.6Chapter 1.4.3 --- Informative Learning Approaches: Conditional Infomax Learning and Information Chan- nel Model --- p.6Chapter 1.5 --- Organization of the Thesis --- p.8Chapter I --- History and Background --- p.10Chapter 2 --- Statistical Pattern Recognition --- p.11Chapter 2.1 --- Patterns and Classifiers --- p.11Chapter 2.2 --- Bayes Theory --- p.12Chapter 2.3 --- Statistical Modeling --- p.14Chapter 2.3.1 --- Maximum Likelihood Estimation --- p.14Chapter 2.3.2 --- Gaussian Model --- p.15Chapter 2.3.3 --- Expectation-Maximization --- p.17Chapter 2.3.4 --- Finite Mixture Model --- p.18Chapter 2.3.5 --- A Nonparametric Technique: Parzen Windows --- p.21Chapter 3 --- Statistical Learning Theory --- p.24Chapter 3.1 --- Formulation of Learning Model --- p.24Chapter 3.1.1 --- Learning: Functional Estimation Model --- p.24Chapter 3.1.2 --- Representative Learning Problems --- p.25Chapter 3.1.3 --- Empirical Risk Minimization --- p.26Chapter 3.2 --- Consistency and Convergence of Learning --- p.27Chapter 3.2.1 --- Concept of Consistency --- p.27Chapter 3.2.2 --- The Key Theorem of Learning Theory --- p.28Chapter 3.2.3 --- VC Entropy --- p.29Chapter 3.2.4 --- Bounds on Convergence --- p.30Chapter 3.2.5 --- VC Dimension --- p.35Chapter 4 --- History of Statistical Feature Extraction --- p.38Chapter 4.1 --- Linear Feature Extraction --- p.38Chapter 4.1.1 --- Principal Component Analysis (PCA) --- p.38Chapter 4.1.2 --- Linear Discriminant Analysis (LDA) --- p.41Chapter 4.1.3 --- Other Linear Feature Extraction Methods --- p.46Chapter 4.1.4 --- Comparison of Different Methods --- p.48Chapter 4.2 --- Enhanced Models --- p.49Chapter 4.2.1 --- Stochastic Discrimination and Random Subspace --- p.49Chapter 4.2.2 --- Hierarchical Feature Extraction --- p.51Chapter 4.2.3 --- Multilinear Analysis and Tensor-based Representation --- p.52Chapter 4.3 --- Nonlinear Feature Extraction --- p.54Chapter 4.3.1 --- Kernelization --- p.54Chapter 4.3.2 --- Dimension reduction by Manifold Embedding --- p.56Chapter 5 --- Related Works in Feature Extraction --- p.59Chapter 5.1 --- Dimension Reduction --- p.59Chapter 5.1.1 --- Feature Selection --- p.60Chapter 5.1.2 --- Feature Extraction --- p.60Chapter 5.2 --- Kernel Learning --- p.61Chapter 5.2.1 --- Basic Concepts of Kernel --- p.61Chapter 5.2.2 --- The Reproducing Kernel Map --- p.62Chapter 5.2.3 --- The Mercer Kernel Map --- p.64Chapter 5.2.4 --- The Empirical Kernel Map --- p.65Chapter 5.2.5 --- Kernel Trick and Kernelized Feature Extraction --- p.66Chapter 5.3 --- Subspace Analysis --- p.68Chapter 5.3.1 --- Basis and Subspace --- p.68Chapter 5.3.2 --- Orthogonal Projection --- p.69Chapter 5.3.3 --- Orthonormal Basis --- p.70Chapter 5.3.4 --- Subspace Decomposition --- p.70Chapter 5.4 --- Principal Component Analysis --- p.73Chapter 5.4.1 --- PCA Formulation --- p.73Chapter 5.4.2 --- Solution to PCA --- p.75Chapter 5.4.3 --- Energy Structure of PCA --- p.76Chapter 5.4.4 --- Probabilistic Principal Component Analysis --- p.78Chapter 5.4.5 --- Kernel Principal Component Analysis --- p.81Chapter 5.5 --- Independent Component Analysis --- p.83Chapter 5.5.1 --- ICA Formulation --- p.83Chapter 5.5.2 --- Measurement of Statistical Independence --- p.84Chapter 5.6 --- Linear Discriminant Analysis --- p.85Chapter 5.6.1 --- Fisher's Linear Discriminant Analysis --- p.85Chapter 5.6.2 --- Improved Algorithms for Small Sample Size Problem . --- p.89Chapter 5.6.3 --- Kernel Discriminant Analysis --- p.92Chapter II --- Improvement in Linear Discriminant Analysis --- p.100Chapter 6 --- Generalized LDA --- p.101Chapter 6.1 --- Regularized LDA --- p.101Chapter 6.1.1 --- Generalized LDA Implementation Procedure --- p.101Chapter 6.1.2 --- Optimal Nonsingular Approximation --- p.103Chapter 6.1.3 --- Regularized LDA algorithm --- p.104Chapter 6.2 --- A Statistical View: When is LDA optimal? --- p.105Chapter 6.2.1 --- Two-class Gaussian Case --- p.106Chapter 6.2.2 --- Multi-class Cases --- p.107Chapter 6.3 --- Generalized LDA Formulation --- p.108Chapter 6.3.1 --- Mathematical Preparation --- p.108Chapter 6.3.2 --- Generalized Formulation --- p.110Chapter 7 --- Dynamic Feedback Generalized LDA --- p.112Chapter 7.1 --- Basic Principle --- p.112Chapter 7.2 --- Dynamic Feedback Framework --- p.113Chapter 7.2.1 --- Initialization: K-Nearest Construction --- p.113Chapter 7.2.2 --- Dynamic Procedure --- p.115Chapter 7.3 --- Experiments --- p.115Chapter 7.3.1 --- Performance in Training Stage --- p.116Chapter 7.3.2 --- Performance on Testing set --- p.118Chapter 8 --- Performance-Driven Subspace Learning --- p.119Chapter 8.1 --- Motivation and Principle --- p.119Chapter 8.2 --- Performance-Based Criteria --- p.121Chapter 8.2.1 --- The Verification Problem and Generalized Average Margin --- p.122Chapter 8.2.2 --- Performance Driven Criteria based on Generalized Average Margin --- p.123Chapter 8.3 --- Optimal Subspace Pursuit --- p.125Chapter 8.3.1 --- Optimal threshold --- p.125Chapter 8.3.2 --- Optimal projection matrix --- p.125Chapter 8.3.3 --- Overall procedure --- p.129Chapter 8.3.4 --- Discussion of the Algorithm --- p.129Chapter 8.4 --- Optimal Classifier Fusion --- p.130Chapter 8.5 --- Experiments --- p.131Chapter 8.5.1 --- Performance Measurement --- p.131Chapter 8.5.2 --- Experiment Setting --- p.131Chapter 8.5.3 --- Experiment Results --- p.133Chapter 8.5.4 --- Discussion --- p.139Chapter III --- Coupled Learning of Feature Transforms --- p.140Chapter 9 --- Coupled Space Learning --- p.141Chapter 9.1 --- Introduction --- p.142Chapter 9.1.1 --- What is Image Style Transform --- p.142Chapter 9.1.2 --- Overview of our Framework --- p.143Chapter 9.2 --- Coupled Space Learning --- p.143Chapter 9.2.1 --- Framework of Coupled Modelling --- p.143Chapter 9.2.2 --- Correlative Component Analysis --- p.145Chapter 9.2.3 --- Coupled Bidirectional Transform --- p.148Chapter 9.2.4 --- Procedure of Coupled Space Learning --- p.151Chapter 9.3 --- Generalization to Mixture Model --- p.152Chapter 9.3.1 --- Coupled Gaussian Mixture Model --- p.152Chapter 9.3.2 --- Optimization by EM Algorithm --- p.152Chapter 9.4 --- Integrated Framework for Image Style Transform --- p.154Chapter 9.5 --- Experiments --- p.156Chapter 9.5.1 --- Face Super-resolution --- p.156Chapter 9.5.2 --- Portrait Style Transforms --- p.157Chapter 10 --- Inter-Modality Recognition --- p.162Chapter 10.1 --- Introduction to the Inter-Modality Recognition Problem . . . --- p.163Chapter 10.1.1 --- What is Inter-Modality Recognition --- p.163Chapter 10.1.2 --- Overview of Our Feature Extraction Framework . . . . --- p.163Chapter 10.2 --- Common Discriminant Feature Extraction --- p.165Chapter 10.2.1 --- Formulation of the Learning Problem --- p.165Chapter 10.2.2 --- Matrix-Form of the Objective --- p.168Chapter 10.2.3 --- Solving the Linear Transforms --- p.169Chapter 10.3 --- Kernelized Common Discriminant Feature Extraction --- p.170Chapter 10.4 --- Multi-Mode Framework --- p.172Chapter 10.4.1 --- Multi-Mode Formulation --- p.172Chapter 10.4.2 --- Optimization Scheme --- p.174Chapter 10.5 --- Experiments --- p.176Chapter 10.5.1 --- Experiment Settings --- p.176Chapter 10.5.2 --- Experiment Results --- p.177Chapter IV --- A New Perspective: Informative Learning --- p.180Chapter 11 --- Toward Information Theory --- p.181Chapter 11.1 --- Entropy and Mutual Information --- p.181Chapter 11.1.1 --- Entropy --- p.182Chapter 11.1.2 --- Relative Entropy (Kullback Leibler Divergence) --- p.184Chapter 11.2 --- Mutual Information --- p.184Chapter 11.2.1 --- Definition of Mutual Information --- p.184Chapter 11.2.2 --- Chain rules --- p.186Chapter 11.2.3 --- Information in Data Processing --- p.188Chapter 11.3 --- Differential Entropy --- p.189Chapter 11.3.1 --- Differential Entropy of Continuous Random Variable . --- p.189Chapter 11.3.2 --- Mutual Information of Continuous Random Variable . --- p.190Chapter 12 --- Conditional Infomax Learning --- p.191Chapter 12.1 --- An Overview --- p.192Chapter 12.2 --- Conditional Informative Feature Extraction --- p.193Chapter 12.2.1 --- Problem Formulation and Features --- p.193Chapter 12.2.2 --- The Information Maximization Principle --- p.194Chapter 12.2.3 --- The Information Decomposition and the Conditional Objective --- p.195Chapter 12.3 --- The Efficient Optimization --- p.197Chapter 12.3.1 --- Discrete Approximation Based on AEP --- p.197Chapter 12.3.2 --- Analysis of Terms and Their Derivatives --- p.198Chapter 12.3.3 --- Local Active Region Method --- p.200Chapter 12.4 --- Bayesian Feature Fusion with Sparse Prior --- p.201Chapter 12.5 --- The Integrated Framework for Feature Learning --- p.202Chapter 12.6 --- Experiments --- p.203Chapter 12.6.1 --- A Toy Problem --- p.203Chapter 12.6.2 --- Face Recognition --- p.204Chapter 13 --- Channel-based Maximum Effective Information --- p.209Chapter 13.1 --- Motivation and Overview --- p.209Chapter 13.2 --- Maximizing Effective Information --- p.211Chapter 13.2.1 --- Relation between Mutual Information and Classification --- p.211Chapter 13.2.2 --- Linear Projection and Metric --- p.212Chapter 13.2.3 --- Channel Model and Effective Information --- p.213Chapter 13.2.4 --- Parzen Window Approximation --- p.216Chapter 13.3 --- Parameter Optimization on Grassmann Manifold --- p.217Chapter 13.3.1 --- Grassmann Manifold --- p.217Chapter 13.3.2 --- Conjugate Gradient Optimization on Grassmann Manifold --- p.219Chapter 13.3.3 --- Computation of Gradient --- p.221Chapter 13.4 --- Experiments --- p.222Chapter 13.4.1 --- A Toy Problem --- p.222Chapter 13.4.2 --- Face Recognition --- p.223Chapter 14 --- Conclusion --- p.23

    Action recognition in visual sensor networks: a data fusion perspective

    Get PDF
    Visual Sensor Networks have emerged as a new technology to bring computer vision algorithms to the real world. However, they impose restrictions in the computational resources and bandwidth available to solve target problems. This thesis is concerned with the definition of new efficient algorithms to perform Human Action Recognition with Visual Sensor Networks. Human Action Recognition systems apply sequence modelling methods to integrate the temporal sensor measurements available. Among sequence modelling methods, the Hidden Conditional Random Field has shown a great performance in sequence classification tasks, outperforming many other methods. However, a parameter estimation procedure has not been proposed with feature and model selection properties. This thesis fills this lack proposing a new objective function to optimize during training. The L2 regularizer employed in the standard objective function is replaced by an overlapping group-L1 regularizer that produces feature and model selection effects in the optima. A gradient-based search strategy is proposed to find the optimal parameters of the objective function. Experimental evidence shows that Hidden Conditional Random Fields with their parameters estimated employing the proposed method have a higher predictive accuracy than those estimated with the standard method, with an smaller inference cost. This thesis also deals with the problem of human action recognition from multiple cameras, with the focus on reducing the amount of network bandwidth required. A multiple view dimensionality reduction framework is developed to obtain similar low dimensional representation for the motion descriptors extracted from multiple cameras. An alternative is proposed predicting the action class locally at each camera with the motion descriptors extracted from each view and integrating the different action decisions to make a global decision on the action performed. The reported experiments show that the proposed framework has a predictive performance similar to 3D state of the art methods, but with a lower computational complexity and lower bandwidth requirements. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------Las Redes de Sensores Visuales son una nueva tecnología que permite el despliegue de algoritmos de visión por computador en el mundo real. Sin embargo, estas imponen restricciones en los recursos de computo y de ancho de banda disponibles para la resolución del problema en cuestión. Esta tesis tiene por objeto la definición de nuevos algoritmos con los que realizar reconocimiento de actividades humanas en redes de sensores visuales, teniendo en cuenta las restricciones planteadas. Los sistemas de reconocimiento de acciones aplican métodos de modelado de secuencias para la integración de las medidas temporales proporcionadas por los sensores. Entre los modelos para el modelado de secuencias, el Hidden Conditional Random Field a mostrado un gran rendimiento en la clasificación de secuencias, superando a otros métodos existentes. Sin embargo, no se ha definido un procedimiento para la integración de sus parámetros que incluya selección de atributos y selección de modelo. Esta tesis tiene por objeto cubrir esta carencia proponiendo una nueva función objetivo para optimizar durante la estimación de los parámetros obtimos. El regularizador L2 empleado en la función objetivo estandar se va a remplazar for un regularizador grupo-L1 solapado que va a producir los efectos de selección de modelo y atributos deseados en el óptimo. Se va a proponer una estrategia de búsqueda con la que obtener el valor óptimo de estos parámetros. Los experimentos realizados muestran que los modelos estimados utilizando la función objetivo prouesta tienen un mayor poder de predicción, reduciendo al mismo tiempo el coste computacional de la inferencia. Esta tesis también trata el problema del reconocimiento de acciones humanas emepleando multiples cámaras, centrándonos en reducir la cantidad de ancho de banda requerido par el proceso. Para ello se propone un nueva estructura en la que definir algoritmos de reducción de dimensionalidad para datos definidos en multiples vistas. Mediante su aplicación se obtienen representaciones de baja dimensionalidad similares para los descriptores de movimiento calculados en cada una de las cámaras.También se propone un método alternativo basado en la predicción de la acción realizada con los descriptores obtenidos en cada una de las cámaras, para luego combinar las diferentes predicciones en una global. La experimentación realizada muestra que estos métodos tienen una eficacia similar a la alcanzada por los métodos existentes basados en reconstrucción 3D, pero con una menor complejidad computacional y un menor uso de la red

    Robust visual tracking using feature selection

    Get PDF
    Visual tracking has become a very important component in computer vision, but achieving a robust, reliable and real time tracking remains a real challenge.In order to improve the actual state-of-the-art, we choose to study and improve one of the most performing adaptive tracker by detection. We selected Struck [27] for this quality performance and his low computational cost that makes it real time. Inspired by the great successes of binary keypoint descriptors, we choose to apply binary description to a patch. We propose to use Multi-Block Local Binary Pattern (MB-LBP), based on its great success in face detection and description. In this work we present a technique for selecting the best features for tracking. In combination with the feature selection we propose a technique to take into account contextual information in order to increase the robustness of the tracker. We propose a solution to add scale adaptation to the algorithm, and suggest to transpose this technique to add rotation adaptation. Experimentally we validate these techniques showing that we outperform the state-of-art racking algorithms. To do that we use a benchmarking tool using 51 videos and compare our algorithm to 29 algorithms

    A survey on heterogeneous face recognition: Sketch, infra-red, 3D and low-resolution

    Get PDF
    Heterogeneous face recognition (HFR) refers to matching face imagery across different domains. It has received much interest from the research community as a result of its profound implications in law enforcement. A wide variety of new invariant features, cross-modality matching models and heterogeneous datasets are being established in recent years. This survey provides a comprehensive review of established techniques and recent developments in HFR. Moreover, we offer a detailed account of datasets and benchmarks commonly used for evaluation. We finish by assessing the state of the field and discussing promising directions for future research
    corecore