543 research outputs found

    Reinforcement Learning-assisted Evolutionary Algorithm: A Survey and Research Opportunities

    Full text link
    Evolutionary algorithms (EA), a class of stochastic search methods based on the principles of natural evolution, have received widespread acclaim for their exceptional performance in various real-world optimization problems. While researchers worldwide have proposed a wide variety of EAs, certain limitations remain, such as slow convergence speed and poor generalization capabilities. Consequently, numerous scholars actively explore improvements to algorithmic structures, operators, search patterns, etc., to enhance their optimization performance. Reinforcement learning (RL) integrated as a component in the EA framework has demonstrated superior performance in recent years. This paper presents a comprehensive survey on integrating reinforcement learning into the evolutionary algorithm, referred to as reinforcement learning-assisted evolutionary algorithm (RL-EA). We begin with the conceptual outlines of reinforcement learning and the evolutionary algorithm. We then provide a taxonomy of RL-EA. Subsequently, we discuss the RL-EA integration method, the RL-assisted strategy adopted by RL-EA, and its applications according to the existing literature. The RL-assisted procedure is divided according to the implemented functions including solution generation, learnable objective function, algorithm/operator/sub-population selection, parameter adaptation, and other strategies. Finally, we analyze potential directions for future research. This survey serves as a rich resource for researchers interested in RL-EA as it overviews the current state-of-the-art and highlights the associated challenges. By leveraging this survey, readers can swiftly gain insights into RL-EA to develop efficient algorithms, thereby fostering further advancements in this emerging field.Comment: 26 pages, 16 figure

    A Keyword, Taxonomy and Cartographic Research Review of Sustainability Concepts for Production Scheduling in Manufacturing Systems

    Get PDF
    The concept of sustainability is defined as composed of three pillars: social, environmental, and economic. Social sustainability implies a commitment to equity in terms of several “interrelated and mutually supportive” principles of a “sustainable society”; this concept includes attitude change, the Earth’s vitality and diversity conservation, and a global alliance to achieve sustainability. The social and environmental aspects of sustainability are related in the way sustainability indicators are related to “quality of life” and “ecological sustainability”. The increasing interest in green and sustainable products and production has influenced research interests regarding sustainable scheduling problems in manufacturing systems. This study is aimed both at reducing pollutant emissions and increasing production efficiency: this topic is known as Green Scheduling. Existing literature research reviews on Green Scheduling Problems have pointed out both theoretical and practical aspects of this topic. The proposed work is a critical review of the scientific literature with a three-pronged approach based on keywords, taxonomy analysis, and research mapping. Specific research questions have been proposed to highlight the benefits and related objectives of this review: to discover the most widely used methodologies for solving SPGs in manufacturing and identify interesting development models, as well as the least studied domains and algorithms. The literature was analysed in order to define a map of the main research fields on SPG, highlight mainstream SPG research, propose an efficient view of emerging research areas, propose a taxonomy of SPG by collecting multiple keywords into semantic clusters, and analyse the literature according to a semantic knowledge approach. At the same time, GSP researchers are provided with an efficient view of emerging research areas, allowing them to avoid missing key research areas and focus on emerging ones

    The Three-Objective Optimization Model of Flexible Workshop Scheduling Problem for Minimizing Work Completion Time, Work Delay Time, and Energy Consumption

    Get PDF
    In recent years, the optimal design of the workshop schedule has received much attention with the increased competition in the business environment. As a strategic issue, designing a workshop schedule affects other decisions in the production chain. The purpose of this thesis is to design a three-objective mathematical model, with the objectives of minimizing work completion time, work delay time and energy consumption, considering the importance of businesses attention to reduce energy consumption in recent years. The developed model has been solved using exact solution methods of Weighted Sum (WS) and Epsilon Constraint (Ɛ) in small dimensions using GAMS software. These problems were also solved in large-scale problems with NSGA-II and SFLA meta-heuristic algorithms using MATLAB software in single-objective and multi-objective mode due to the NP-Hard nature of this group of large and real dimensional problems. The standard BRdata set of problems were used to investigate the algorithms performance in solving these problems so that it is possible to compare the algorithms performance of this research with the results of the algorithms used by other researchers. The obtained results show the relatively appropriate performance of these algorithms in solving these problems and also the much better and more optimal performance of the NSGA-II algorithm compared to the performance of the SFLA algorithm

    Coverage Protocols for Wireless Sensor Networks: Review and Future Directions

    Full text link
    The coverage problem in wireless sensor networks (WSNs) can be generally defined as a measure of how effectively a network field is monitored by its sensor nodes. This problem has attracted a lot of interest over the years and as a result, many coverage protocols were proposed. In this survey, we first propose a taxonomy for classifying coverage protocols in WSNs. Then, we classify the coverage protocols into three categories (i.e. coverage aware deployment protocols, sleep scheduling protocols for flat networks, and cluster-based sleep scheduling protocols) based on the network stage where the coverage is optimized. For each category, relevant protocols are thoroughly reviewed and classified based on the adopted coverage techniques. Finally, we discuss open issues (and recommend future directions to resolve them) associated with the design of realistic coverage protocols. Issues such as realistic sensing models, realistic energy consumption models, realistic connectivity models and sensor localization are covered
    corecore