969 research outputs found

    Advanced Data Mining Techniques for Compound Objects

    Get PDF
    Knowledge Discovery in Databases (KDD) is the non-trivial process of identifying valid, novel, potentially useful, and ultimately understandable patterns in large data collections. The most important step within the process of KDD is data mining which is concerned with the extraction of the valid patterns. KDD is necessary to analyze the steady growing amount of data caused by the enhanced performance of modern computer systems. However, with the growing amount of data the complexity of data objects increases as well. Modern methods of KDD should therefore examine more complex objects than simple feature vectors to solve real-world KDD applications adequately. Multi-instance and multi-represented objects are two important types of object representations for complex objects. Multi-instance objects consist of a set of object representations that all belong to the same feature space. Multi-represented objects are constructed as a tuple of feature representations where each feature representation belongs to a different feature space. The contribution of this thesis is the development of new KDD methods for the classification and clustering of complex objects. Therefore, the thesis introduces solutions for real-world applications that are based on multi-instance and multi-represented object representations. On the basis of these solutions, it is shown that a more general object representation often provides better results for many relevant KDD applications. The first part of the thesis is concerned with two KDD problems for which employing multi-instance objects provides efficient and effective solutions. The first is the data mining in CAD parts, e.g. the use of hierarchic clustering for the automatic construction of product hierarchies. The introduced solution decomposes a single part into a set of feature vectors and compares them by using a metric on multi-instance objects. Furthermore, multi-step query processing using a novel filter step is employed, enabling the user to efficiently process similarity queries. On the basis of this similarity search system, it is possible to perform several distance based data mining algorithms like the hierarchical clustering algorithm OPTICS to derive product hierarchies. The second important application is the classification and search for complete websites in the world wide web (WWW). A website is a set of HTML-documents that is published by the same person, group or organization and usually serves a common purpose. To perform data mining for websites, the thesis presents several methods to classify websites. After introducing naive methods modelling websites as webpages, two more sophisticated approaches to website classification are introduced. The first approach uses a preprocessing that maps single HTML-documents within each website to so-called page classes. The second approach directly compares websites as sets of word vectors and uses nearest neighbor classification. To search the WWW for new, relevant websites, a focused crawler is introduced that efficiently retrieves relevant websites. This crawler minimizes the number of HTML-documents and increases the accuracy of website retrieval. The second part of the thesis is concerned with the data mining in multi-represented objects. An important example application for this kind of complex objects are proteins that can be represented as a tuple of a protein sequence and a text annotation. To analyze multi-represented objects, a clustering method for multi-represented objects is introduced that is based on the density based clustering algorithm DBSCAN. This method uses all representations that are provided to find a global clustering of the given data objects. However, in many applications there already exists a sophisticated class ontology for the given data objects, e.g. proteins. To map new objects into an ontology a new method for the hierarchical classification of multi-represented objects is described. The system employs the hierarchical structure of the ontology to efficiently classify new proteins, using support vector machines

    Accelerated focused crawling through online relevance feedback

    Get PDF
    The organization of HTML into a tag tree structure, which is rendered by browsers as roughly rectangular regions with embedded text and HREF links, greatly helps surfers locate and click on links that best satisfy their information need. Can an automatic program emulate this human behavior and thereby learn to predict the relevance of an unseen HREF target page w.r.t. an information need, based on information limited to the HREF source page? Such a capability would be of great interest in focused crawling and resource discovery, because it can fine-tune the priority of unvisited URLs in the crawl frontier, and reduce the number of irrelevant pages which are fetched and discarded

    NLP-Based Techniques for Cyber Threat Intelligence

    Full text link
    In the digital era, threat actors employ sophisticated techniques for which, often, digital traces in the form of textual data are available. Cyber Threat Intelligence~(CTI) is related to all the solutions inherent to data collection, processing, and analysis useful to understand a threat actor's targets and attack behavior. Currently, CTI is assuming an always more crucial role in identifying and mitigating threats and enabling proactive defense strategies. In this context, NLP, an artificial intelligence branch, has emerged as a powerful tool for enhancing threat intelligence capabilities. This survey paper provides a comprehensive overview of NLP-based techniques applied in the context of threat intelligence. It begins by describing the foundational definitions and principles of CTI as a major tool for safeguarding digital assets. It then undertakes a thorough examination of NLP-based techniques for CTI data crawling from Web sources, CTI data analysis, Relation Extraction from cybersecurity data, CTI sharing and collaboration, and security threats of CTI. Finally, the challenges and limitations of NLP in threat intelligence are exhaustively examined, including data quality issues and ethical considerations. This survey draws a complete framework and serves as a valuable resource for security professionals and researchers seeking to understand the state-of-the-art NLP-based threat intelligence techniques and their potential impact on cybersecurity

    Automatic Discovery, Association Estimation and Learning of Semantic Attributes for a Thousand Categories

    Full text link
    Attribute-based recognition models, due to their impressive performance and their ability to generalize well on novel categories, have been widely adopted for many computer vision applications. However, usually both the attribute vocabulary and the class-attribute associations have to be provided manually by domain experts or large number of annotators. This is very costly and not necessarily optimal regarding recognition performance, and most importantly, it limits the applicability of attribute-based models to large scale data sets. To tackle this problem, we propose an end-to-end unsupervised attribute learning approach. We utilize online text corpora to automatically discover a salient and discriminative vocabulary that correlates well with the human concept of semantic attributes. Moreover, we propose a deep convolutional model to optimize class-attribute associations with a linguistic prior that accounts for noise and missing data in text. In a thorough evaluation on ImageNet, we demonstrate that our model is able to efficiently discover and learn semantic attributes at a large scale. Furthermore, we demonstrate that our model outperforms the state-of-the-art in zero-shot learning on three data sets: ImageNet, Animals with Attributes and aPascal/aYahoo. Finally, we enable attribute-based learning on ImageNet and will share the attributes and associations for future research.Comment: Accepted as a conference paper at CVPR 201

    A Survey on Region Extractors from Web Documents

    Get PDF
    Extracting information from web documents has become a research area in which new proposals sprout out year after year. This has motivated several researchers to work on surveys that attempt to provide an overall picture of the many existing proposals. Unfortunately, none of these surveys provide a complete picture, because they do not take region extractors into account. These tools are kind of preprocessors, because they help information extractors focus on the regions of a web document that contain relevant information. With the increasing complexity of web documents, region extractors are becoming a must to extract information from many websites. Beyond information extraction, region extractors have also found their way into information retrieval, focused web crawling, topic distillation, adaptive content delivery, mashups, and metasearch engines. In this paper, we survey the existing proposals regarding region extractors and compare them side by side.Ministerio de Educación y Ciencia TIN2007-64119Junta de Andalucía P07-TIC-2602Junta de Andalucía P08- TIC-4100Ministerio de Ciencia e Innovación TIN2008-04718-EMinisterio de Ciencia e Innovación TIN2010-21744Ministerio de Economía, Industria y Competitividad TIN2010-09809-EMinisterio de Ciencia e Innovación TIN2010-10811-EMinisterio de Ciencia e Innovación TIN2010-09988-
    corecore