469 research outputs found

    On QoS routing and path establishment in the presence of imprecise state information

    Full text link

    A new QoS Routing Architecture in NGI

    Get PDF
    After a thorough understanding of the relevant research knowledge and the key theory of NGN, I describe the research objectives and the recent development of the QoS routing in this thesis. QoS routing is regarded as the key part in the problem of the next generation of integrated-service network. A new routing algorithm is put forward in this thesis, which is better than OSPF in some aspects. As for the experiment, NS2 is chosen as the simulation environment, and some other experimental results are also included to manifest its strongpoint. The development and requirement of NGN is described in Chapter One; The definition and types of routing and the basic theories of QoS routing are described in Chapter Two; The development and research method of QoS are focused in Chapter Three. The new routing algorithm and simulation is proposed in Chapter Four

    Quality-of-service provisioning in high speed networks : routing perspectives

    Get PDF
    The continuous growth in both commercial and public network traffic with various quality-of-service (QoS) requirements is calling for better service than the current Internet\u27s best effort mechanism. One of the challenging issues is to select feasible paths that satisfy the different requirements of various applications. This problem is known as QoS routing. In general, two issues are related to QoS routing: state distribution and routing strategy. Routing strategy is used to find a feasible path that meets the QoS requirements. State distribution addresses the issue of exchanging the state information throughout the network, and can be further divided into two sub-problems: when to update and how to disseminate the state information. In this dissertation, the issue of when to update link state information from the perspective of information theory is addressed. Based on the rate-distortion analysis, an efficient scheme, which outperforms the state of the art in terms of both protocol overhead and accuracy of link state information, is presented. Second, a reliable scheme is proposed so that, when a link is broken, link state information is still reachable to all network nodes as long as the network is connected. Meanwhile, the protocol overhead is low enough to be implemented in real networks. Third, QoS routing is NP-complete. Hence, tackling this problem requires heuristics. A common approach is to convert this problem into a shortest path or k-shortest path problem and solve it by using existing algorithms such as Bellman-Ford and Dijkstra algorithms. However, this approach suffers from either high computational complexity or low success ratio in finding the feasible paths. Hence, a new problem, All Hops k-shortest Path (AHKP), is introduced and investigated. Based on the solution to AHKP, an efficient self-adaptive routing algorithm is presented, which can guarantee in finding feasible paths with fairly low average computational complexity. One of its most distinguished properties is its progressive property, which is very useful in practice: it can self-adaptively minimize its computational complexity without sacrificing its performance. In addition, routing without considering the staleness of link state information may generate a significant percentage of false routing. Our proposed routing algorithm is capable of minimizing the impact of stale link state information without stochastic link state knowledge. Fourth, the computational complexities of existing s-approximation algorithms are linearly proportional to the adopted linear scaling factors. Therefore, two efficient algorithms are proposed for finding the optimal (the smallest) linear scaling factor such that the computational complexities are reduced. Finally, an efficient algorithm is proposed for finding the least hop(s) multiple additive constrained path for the purpose of saving network resources

    Quality-of-Service-Adequate Wireless Receiver Design

    Get PDF

    A CLUSTERING-BASED SELECTIVE PROBING FRAMEWORK TO SUPPORT INTERNET QUALITY OF SERVICE ROUTING

    Get PDF
    The advent of the multimedia applications has triggered widespread interest in QoS supports. Two Internet-based QoS frameworks have been proposed: Integrated Services (IntServ) and Differentiated Services (DiffServ). IntServ supports service guarantees on a per-flow basis. The framework, however, is not scalable due to the fact that routers have to maintain a large amount of state information for each supported flow. DiffServ was proposed as an alternate solution to address the lack of scalability of the IntServ framework. DiffServ uses class-based service differentiation to achieve aggregate support for QoS requirements. This approach eliminates the need to maintain per-flow states on a hop-by-hop basis and reduces considerably the overhead routers incur in forwarding traffic.Both IntServ and DiffServ frameworks focus on packet scheduling. As such, they decouple routing from QoS provisioning. This typically results in inefficient routes, thereby limiting the ability of the network to support QoS requirements and to manage resources efficiently. The goal of this thesis is to address this shortcoming. We propose a scalable QoS routing framework to identify and select paths that are very likely to meet the QoS requirements of the underlying applications. The tenet of our approach is based on seamlessly integrating routing into the DiffServ framework to extend its ability to support QoS requirements. Scalability is achieved using selective probing and clustering to reduce signaling and routers overhead.The major contributions of this thesis are as follows: First, we propose a scalable routing architecture that supports QoS requirements. The architecture seamlessly integrates the QoS traffic requirements of the underlying applications into a DiffServ framework. Second, we propose a new delay-based clustering method, referred to as d-median. The proposed clustering method groups Internet nodes into clusters, whereby nodes in the same cluster exhibit equivalent delay characteristics. Each cluster is represented by anchor node. Anchors use selective probing to estimate QoS parameters and select appropriate paths for traffic forwarding. A thorough study to evaluate the performance of the proposed d-median clustering algorithm is conducted. The results of the study show that, for power-law graphs such as the Internet, the d-median clustering based approach outperforms the set covering method commonly proposed in the literature. The study shows that the widely used clustering methods, such as set covering or k-median, are inadequate to capture the balance between cluster sizes and the number of clusters. The results of the study also show that the proposed clustering method, applied to power-law graphs, is robust to changes in size and delay distribution of the network. Finally, the results suggest that the delay bound input parameter of the d-median scheme should be no less than 1 and no more than 4 times of the average delay per one hop of the network. This is mostly due to the weak hierarchy of the Internet resulting from its power-law structure and the prevalence of the small-world property

    Measuring And Improving Internet Video Quality Of Experience

    Get PDF
    Streaming multimedia content over the IP-network is poised to be the dominant Internet traffic for the coming decade, predicted to account for more than 91% of all consumer traffic in the coming years. Streaming multimedia content ranges from Internet television (IPTV), video on demand (VoD), peer-to-peer streaming, and 3D television over IP to name a few. Widespread acceptance, growth, and subscriber retention are contingent upon network providers assuring superior Quality of Experience (QoE) on top of todays Internet. This work presents the first empirical understanding of Internet’s video-QoE capabilities, and tools and protocols to efficiently infer and improve them. To infer video-QoE at arbitrary nodes in the Internet, we design and implement MintMOS: a lightweight, real-time, noreference framework for capturing perceptual quality. We demonstrate that MintMOS’s projections closely match with subjective surveys in accessing perceptual quality. We use MintMOS to characterize Internet video-QoE both at the link level and end-to-end path level. As an input to our study, we use extensive measurements from a large number of Internet paths obtained from various measurement overlays deployed using PlanetLab. Link level degradations of intra– and inter–ISP Internet links are studied to create an empirical understanding of their shortcomings and ways to overcome them. Our studies show that intra–ISP links are often poorly engineered compared to peering links, and that iii degradations are induced due to transient network load imbalance within an ISP. Initial results also indicate that overlay networks could be a promising way to avoid such ISPs in times of degradations. A large number of end-to-end Internet paths are probed and we measure delay, jitter, and loss rates. The measurement data is analyzed offline to identify ways to enable a source to select alternate paths in an overlay network to improve video-QoE, without the need for background monitoring or apriori knowledge of path characteristics. We establish that for any unstructured overlay of N nodes, it is sufficient to reroute key frames using a random subset of k nodes in the overlay, where k is bounded by O(lnN). We analyze various properties of such random subsets to derive simple, scalable, and an efficient path selection strategy that results in a k-fold increase in path options for any source-destination pair; options that consistently outperform Internet path selection. Finally, we design a prototype called source initiated frame restoration (SIFR) that employs random subsets to derive alternate paths and demonstrate its effectiveness in improving Internet video-QoE

    Strategies for internet route control: past, present and future

    Get PDF
    Uno de los problemas más complejos en redes de computadores es el de proporcionar garantías de calidad y confiabilidad a las comunicaciones de datos entre entidades que se encuentran en dominios distintos. Esto se debe a un amplio conjunto de razones -- las cuales serán analizadas en detalle en esta tesis -- pero de manera muy breve podemos destacar: i) la limitada flexibilidad que presenta el modelo actual de encaminamiento inter-dominio en materia de ingeniería de tráfico; ii) la naturaleza distribuida y potencialmente antagónica de las políticas de encaminamiento, las cuales son administradas individualmente y sin coordinación por cada dominio en Internet; y iii) las carencias del protocolo de encaminamiento inter-dominio utilizado en Internet, denominado BGP (Border Gateway Protocol).El objetivo de esta tesis, es precisamente el estudio y propuesta de soluciones que permitan mejorar drásticamente la calidad y confiabilidad de las comunicaciones de datos en redes conformadas por múltiples dominios.Una de las principales herramientas para lograr este fin, es tomar el control de las decisiones de encaminamiento y las posibles acciones de ingeniería de tráfico llevadas a cabo en cada dominio. Por este motivo, esta tesis explora distintas estrategias de como controlar en forma precisa y eficiente, tanto el encaminamiento como las decisiones de ingeniería de tráfico en Internet. En la actualidad este control reside principalmente en BGP, el cual como indicamos anteriormente, es uno de los principales responsables de las limitantes existentes. El paso natural sería reemplazar a BGP, pero su despliegue actual y su reconocida operatividad en muchos otros aspectos, resultan claros indicadores de que su sustitución (ó su posible evolución) será probablemente gradual. En este escenario, esta tesis propone analizar y contribuir con nuevas estrategias en materia de control de encaminamiento e ingeniería de tráfico inter-dominio en tres marcos temporales distintos: i) en la actualidad en redes IP; ii) en un futuro cercano en redes IP/MPLS (MultiProtocol Label Switching); y iii) a largo plazo en redes ópticas, modelando así una evolución progresiva y realista, facilitando el reemplazo gradual de BGP.Más concretamente, este trabajo analiza y contribuye mediante: - La propuesta de estrategias incrementales basadas en el Control Inteligente de Rutas (Intelligent Route Control, IRC) para redes IP en la actualidad. Las estrategias propuestas en este caso son de carácter incremental en el sentido de que interaccionan con BGP, solucionando varias de las carencias que éste presenta sin llegar a proponer aún su reemplazo. - La propuesta de estrategias concurrentes basadas en extender el concepto del PCE (Path Computation Element) proveniente del IETF (Internet Engineering Task Force) para redes IP/MPLS en un futuro cercano. Las estrategias propuestas en este caso son de carácter concurrente en el sentido de que no interaccionan con BGP y pueden ser desplegadas en forma paralela. En este caso, BGP continúa controlando el encaminamiento y las acciones de ingeniería de tráfico inter-dominio del tráfico IP, pero el control del tráfico IP/MPLS se efectúa en forma independiente de BGP mediante los PCEs.- La propuesta de estrategias que reemplazan completamente a BGP basadas en la incorporación de un nuevo agente de control, al cual denominamos IDRA (Inter-Domain Routing Agent). Estos agentes proporcionan un plano de control dedicado, físicamente independiente del plano de datos, y con gran capacidad computacional para las futuras redes ópticas multi-dominio.Los resultados expuestos aquí validan la efectividad de las estrategias propuestas, las cuales mejoran significativamente tanto la concepción como la performance de las actuales soluciones en el área de Control Inteligente de Rutas, del esperado PCE en un futuro cercano, y de las propuestas existentes para extender BGP al área de redes ópticas.One of the most complex problems in computer networks is how to provide guaranteed performance and reliability to the communications carried out between nodes located in different domains. This is due to several reasons -- which will be analyzed in detail in this thesis -- but in brief, this is mostly due to: i) the limited capabilities of the current inter-domain routing model in terms of Traffic Engineering (TE); ii) the distributed and potentially conflicting nature of policy-based routing, where routing policies are managed independently and without coordination among domains; and iii) the clear limitations of the inter-domain routing protocol, namely, the Border Gateway Protocol (BGP). The goal of this thesis is precisely to study and propose solutions allowing to drastically improve the performance and reliability of inter-domain communications. One of the most important tools to achieve this goal, is to control the routing and TE decisions performed by routing domains. Therefore, this thesis explores different strategies on how to control such decisions in a highly efficient and accurate way. At present, this control mostly resides in BGP, but as mentioned above, BGP is in fact one of the main causes of the existing limitations. The natural next-step would be to replace BGP, but the large installed base at present together with its recognized effectiveness in other aspects, are clear indicators that its replacement (or its possible evolution) will probably be gradually put into practice.In this framework, this thesis proposes to to study and contribute with novel strategies to control the routing and TE decisions of domains in three different time frames: i) at present in IP multi-domain networks; ii) in the near-future in IP/MPLS (MultiProtocol Label Switching) multi- domain networks; and iii) in the future optical Internet, modeling in this way a realistic and progressive evolution, facilitating the gradual replacement of BGP.More specifically, the contributions in this thesis can be summarized as follows. - We start by proposing incremental strategies based on Intelligent Route Control (IRC) solutions for IP networks. The strategies proposed in this case are incremental in the sense that they interact with BGP, and tackle several of its well-known limitations. - Then, we propose a set of concurrent route control strategies for MPLS networks, based on broadening the concept of the Path Computation Element (PCE) coming from the IETF (Internet Engineering Task Force). Our strategies are concurrent in the sense that they do not interact directly with BGP, and they can be deployed in parallel. In this case, BGP still controlls the routing and TE actions concerning regular IP-based traffic, but not how IP/MPLS paths are routed and controlled. These are handled independently by the PCEs.- We end with the proposal of a set of route control strategies for multi-domain optical networks, where BGP has been completely replaced. These strategies are supported by the introduction of a new route control element, which we named Inter-Domain Routing Agent (IDRA). These IDRAs provide a dedicated control plane, i.e., physically independent from the data plane, and with high computational capacity for future optical networks.The results obtained validate the effectiveness of the strategies proposed here, and confirm that our proposals significantly improve both the conception and performance of the current IRC solutions, the expected PCE in the near-future, as well as the existing proposals about the optical extension of BGP.Postprint (published version
    • …
    corecore