1,091 research outputs found

    An Effective Multi-Cue Positioning System for Agricultural Robotics

    Get PDF
    The self-localization capability is a crucial component for Unmanned Ground Vehicles (UGV) in farming applications. Approaches based solely on visual cues or on low-cost GPS are easily prone to fail in such scenarios. In this paper, we present a robust and accurate 3D global pose estimation framework, designed to take full advantage of heterogeneous sensory data. By modeling the pose estimation problem as a pose graph optimization, our approach simultaneously mitigates the cumulative drift introduced by motion estimation systems (wheel odometry, visual odometry, ...), and the noise introduced by raw GPS readings. Along with a suitable motion model, our system also integrates two additional types of constraints: (i) a Digital Elevation Model and (ii) a Markov Random Field assumption. We demonstrate how using these additional cues substantially reduces the error along the altitude axis and, moreover, how this benefit spreads to the other components of the state. We report exhaustive experiments combining several sensor setups, showing accuracy improvements ranging from 37% to 76% with respect to the exclusive use of a GPS sensor. We show that our approach provides accurate results even if the GPS unexpectedly changes positioning mode. The code of our system along with the acquired datasets are released with this paper.Comment: Accepted for publication in IEEE Robotics and Automation Letters, 201

    AgriColMap: Aerial-Ground Collaborative 3D Mapping for Precision Farming

    Full text link
    The combination of aerial survey capabilities of Unmanned Aerial Vehicles with targeted intervention abilities of agricultural Unmanned Ground Vehicles can significantly improve the effectiveness of robotic systems applied to precision agriculture. In this context, building and updating a common map of the field is an essential but challenging task. The maps built using robots of different types show differences in size, resolution and scale, the associated geolocation data may be inaccurate and biased, while the repetitiveness of both visual appearance and geometric structures found within agricultural contexts render classical map merging techniques ineffective. In this paper we propose AgriColMap, a novel map registration pipeline that leverages a grid-based multimodal environment representation which includes a vegetation index map and a Digital Surface Model. We cast the data association problem between maps built from UAVs and UGVs as a multimodal, large displacement dense optical flow estimation. The dominant, coherent flows, selected using a voting scheme, are used as point-to-point correspondences to infer a preliminary non-rigid alignment between the maps. A final refinement is then performed, by exploiting only meaningful parts of the registered maps. We evaluate our system using real world data for 3 fields with different crop species. The results show that our method outperforms several state of the art map registration and matching techniques by a large margin, and has a higher tolerance to large initial misalignments. We release an implementation of the proposed approach along with the acquired datasets with this paper.Comment: Published in IEEE Robotics and Automation Letters, 201

    Building an Aerial-Ground Robotics System for Precision Farming: An Adaptable Solution

    Full text link
    The application of autonomous robots in agriculture is gaining increasing popularity thanks to the high impact it may have on food security, sustainability, resource use efficiency, reduction of chemical treatments, and the optimization of human effort and yield. With this vision, the Flourish research project aimed to develop an adaptable robotic solution for precision farming that combines the aerial survey capabilities of small autonomous unmanned aerial vehicles (UAVs) with targeted intervention performed by multi-purpose unmanned ground vehicles (UGVs). This paper presents an overview of the scientific and technological advances and outcomes obtained in the project. We introduce multi-spectral perception algorithms and aerial and ground-based systems developed for monitoring crop density, weed pressure, crop nitrogen nutrition status, and to accurately classify and locate weeds. We then introduce the navigation and mapping systems tailored to our robots in the agricultural environment, as well as the modules for collaborative mapping. We finally present the ground intervention hardware, software solutions, and interfaces we implemented and tested in different field conditions and with different crops. We describe a real use case in which a UAV collaborates with a UGV to monitor the field and to perform selective spraying without human intervention.Comment: Published in IEEE Robotics & Automation Magazine, vol. 28, no. 3, pp. 29-49, Sept. 202

    Accurate Crop Spraying with RTK and Machine Learning on an Autonomous Field Robot

    Full text link
    The agriculture sector requires a lot of labor and resources. Hence, farmers are constantly being pressed for technology and automation to be cost-effective. In this context, autonomous robots can play a very important role in carrying out agricultural tasks such as spraying, sowing, inspection, and even harvesting. This paper presents one such autonomous robot that is able to identify plants and spray agro-chemicals precisely. The robot uses machine vision technologies to find plants and RTK-GPS technology to navigate the robot along a predetermined path. The experiments were conducted in a field of potted plants in which successful results have been obtained.Comment: 7 pages, 12 figures, Journa

    Determining position and orientation of a 3-wheel robot on a pipe using an accelerometer

    Get PDF
    Accurate positioning of robots on pipes is a challenge in automated industrial inspection. It is typically achieved using expensive and cumbersome external measurement equipment. This paper presents an Inverse Model method for determining the orientation angle (α ) and circumferential position angle (ω) of a 3 point of contact robot on a pipe where measurements are taken from a 3-axis accelerometer sensor. The advantage of this system is that it provides absolute positional measurements using only a robot mounted sensor. Two methods are presented which follow an analytical approximation to correct the estimated values. First, a correction factor found though a parametric study between the robot geometry and a given pipe radius, followed by an optimization solution which calculates the desired angles based on the system configuration, robot geometry and the output of a 3-axis accelerometer. The method is experimentally validated using photogrammetry measurements from a Vicon T160 positioning system to record the position of a three point of contact test rig in relation to a test pipe in a global reference frame. An accelerometer is attached to the 3 point of contact test rig which is placed at different orientation (α ) and circumferential position (ω) angles. This work uses a new method of processing data from an accelerometer sensor to obtain the α and ω angles. The experimental results show a maximum error of 3.40° in α and 4.17° in ω , where the ω circumferential positional error corresponds to ±18mm for the test pipe radius of 253mm
    • …
    corecore