4,916 research outputs found

    Research in Natural Laminar Flow and Laminar-Flow Control, part 2

    Get PDF
    Part 2 of the Symposium proceedings includes papers addressing various topics in basic wind tunnel research/techniques and computational transitional research. Specific topics include: advanced measurement techniques; laminar flow control; Tollmien-Schlichting wave characteristics; boundary layer transition; flow visualization; wind tunnel tests; flight tests; boundary layer equations; swept wings; and skin friction

    Image Feature Information Extraction for Interest Point Detection: A Comprehensive Review

    Full text link
    Interest point detection is one of the most fundamental and critical problems in computer vision and image processing. In this paper, we carry out a comprehensive review on image feature information (IFI) extraction techniques for interest point detection. To systematically introduce how the existing interest point detection methods extract IFI from an input image, we propose a taxonomy of the IFI extraction techniques for interest point detection. According to this taxonomy, we discuss different types of IFI extraction techniques for interest point detection. Furthermore, we identify the main unresolved issues related to the existing IFI extraction techniques for interest point detection and any interest point detection methods that have not been discussed before. The existing popular datasets and evaluation standards are provided and the performances for eighteen state-of-the-art approaches are evaluated and discussed. Moreover, future research directions on IFI extraction techniques for interest point detection are elaborated

    Langley aerospace test highlights, 1985

    Get PDF
    The role of the Langley Research Center is to perform basic and applied research necessary for the advancement of aeronautics and space flight, to generate new and advanced concepts for the accomplishment of related national goals, and to provide research advice, technological support, and assistance to other NASA installations, other government agencies, and industry. Significant tests which were performed during calendar year 1985 in Langley test facilities, are highlighted. Both the broad range of the research and technology activities at the Langley Research Center and the contributions of this work toward maintaining United States leadership in aeronautics and space research, are illustrated. Other highlights of Langley research and technology for 1985 are described in Research and Technology-1985 Annual Report of the Langley Research Center

    THE ROLE OF TIP LEAKAGE FLOW IN SPIKE-TYPE ROTATING STALL INCEPTION

    Get PDF
    This paper describes the role of tip leakage flow in creating the leading edge separation necessary for onset of spike-type compressor rotating stall. A series of unsteady multi-passage simulations, supported by experimental data, are used to define and illustrate the two competing mechanisms that cause the high incidence responsible for this separation: blockage from a casing-suction-surface corner separation and forward spillage of the tip leakage jet. The axial momentum flux in the tip leakage flow determines which mechanism dominates. At zero tip clearance, corner separation blockage dominates. As clearance is increased, the leakage flow reduces blockage, moving the stall flow coefficient to lower flow, i.e. giving a larger unstalled flow range. Increased clearance, however, means increased leakage jet momentum and contribution to leakage jet spillage. There is thus a clearance above which jet spillage dominates in creating incidence, so the stall flow coefficient increases and flow range decreases with clearance. As a consequence there is a clearance for maximum flow range; for the two rotors in this study, the value was approximately 0.5% chord. The chord-wise distribution of the leakage axial momentum is also important in determining stall onset. Shifting the distribution towards the trailing edge increases flow range for a leakage jet dominated geometry and reduces flow range for a corner separation dominated geometry. Guidelines are developed for flow range enhancement through control of tip leakage flow axial momentum magnitude and distribution. An example is given of how this might be achieved.Mitsubishi Heavy Industries, Ltd

    New method to find corner and tangent vertices in sketches using parametric cubic curves approximation

    Full text link
    Some recent approaches have been presented as simple and highly accurate corner finders in the sketches including curves, which is useful to support natural human-computer interaction, but these in most cases do not consider tangent vertices (smooth points between two geometric entities, present in engineering models), what implies an important drawback in the field of design. In this article we present a robust approach based on the approximation to parametric cubic curves of the stroke for further radius function calculation in order to detect corner and tangent vertices. We have called our approach Tangent and Corner Vertices Detection (TCVD), and it works in the following way. First, corner vertices are obtained as minimum radius peaks in the discrete radius function, where radius is obtained from differences. Second, approximated piecewise parametric curves on the stroke are obtained and the analytic radius function is calculated. Then, curves are obtained from stretches of the stroke that have a small radius. Finally, the tangent vertices are found between straight lines and curves or between curves, where no corner vertices are previously located. The radius function to obtain curves is calculated from approximated piecewise curves, which is much more noise free than discrete radius calculation. Several tests have been carried out to compare our approach to that of the current best benchmarked, and the obtained results show that our approach achieves a significant accuracy even better finding corner vertices, and moreover, tangent vertices are detected with an Accuracy near to 92% and a False Positive Rate near to 2%.Spanish Ministry of Science and Education and the FEDER Funds, through CUESKETCH (Ref. DPI2007-66755-C02-01) and HYMAS projects (Ref. DPI2010-19457) partially supported this work.Albert Gil, FE.; García Fernández-Pacheco, D.; Aleixos Borrás, MN. (2013). New method to find corner and tangent vertices in sketches using parametric cubic curves approximation. Pattern Recognition. 46(5):1433-1448. https://doi.org/10.1016/j.patcog.2012.11.006S1433144846

    Asteroid Models from Multiple Data Sources

    Full text link
    In the past decade, hundreds of asteroid shape models have been derived using the lightcurve inversion method. At the same time, a new framework of 3-D shape modeling based on the combined analysis of widely different data sources such as optical lightcurves, disk-resolved images, stellar occultation timings, mid-infrared thermal radiometry, optical interferometry, and radar delay-Doppler data, has been developed. This multi-data approach allows the determination of most of the physical and surface properties of asteroids in a single, coherent inversion, with spectacular results. We review the main results of asteroid lightcurve inversion and also recent advances in multi-data modeling. We show that models based on remote sensing data were confirmed by spacecraft encounters with asteroids, and we discuss how the multiplication of highly detailed 3-D models will help to refine our general knowledge of the asteroid population. The physical and surface properties of asteroids, i.e., their spin, 3-D shape, density, thermal inertia, surface roughness, are among the least known of all asteroid properties. Apart for the albedo and diameter, we have access to the whole picture for only a few hundreds of asteroids. These quantities are nevertheless very important to understand as they affect the non-gravitational Yarkovsky effect responsible for meteorite delivery to Earth, or the bulk composition and internal structure of asteroids.Comment: chapter that will appear in a Space Science Series book Asteroids I

    Sources, paths, and concepts for reduction of noise in the test section of the NASA Langley 4x7m wind tunnel

    Get PDF
    NASA is investigating the feasibility of modifying the 4x7m Wind Tunnel at the Langley Research Center to make it suitable for a variety of aeroacoustic testing applications, most notably model helicopter rotors. The amount of noise reduction required to meet NASA's goal for test section background noise was determined, the predominant sources and paths causing the background noise were quantified, and trade-off studies between schemes to reduce fan noise at the source and those to attenuate the sound generated in the circuit between the sources and the test section were carried out. An extensive data base is also presented on circuit sources and paths

    Overview of the Applied Aerodynamics Division

    Get PDF
    A major reorganization of the Aeronautics Directorate of the Langley Research Center occurred in early 1989. As a result of this reorganization, the scope of research in the Applied Aeronautics Division is now quite different than that in the past. An overview of the current organization, mission, and facilities of this division is presented. A summary of current research programs and sample highlights of recent research are also presented. This is intended to provide a general view of the scope and capabilities of the division

    Effects of an aft facing step on the surface of a laminar flow glider wing

    Get PDF
    A motor glider was used to perform a flight test study on the effects of aft facing steps in a laminar boundary layer. This study focuses on two dimensional aft facing steps oriented spanwise to the flow. The size and location of the aft facing steps were varied in order to determine the critical size that will force premature transition. Transition over a step was found to be primarily a function of Reynolds number based on step height. Both of the step height Reynolds numbers for premature and full transition were determined. A hot film anemometry system was used to detect transition

    Status of Far Infrared Tangential Interferometry/Polarimetry (FIReTIP) on NSTX

    Full text link
    • …
    corecore