44,423 research outputs found

    The applications of deep neural networks to sdBV classification

    Full text link
    With several new large-scale surveys on the horizon, including LSST, TESS, ZTF, and Evryscope, faster and more accurate analysis methods will be required to adequately process the enormous amount of data produced. Deep learning, used in industry for years now, allows for advanced feature detection in minimally prepared datasets at very high speeds; however, despite the advantages of this method, its application to astrophysics has not yet been extensively explored. This dearth may be due to a lack of training data available to researchers. Here we generate synthetic data loosely mimicking the properties of acoustic mode pulsating stars and we show that two separate paradigms of deep learning - the Artificial Neural Network And the Convolutional Neural Network - can both be used to classify this synthetic data effectively. And that additionally this classification can be performed at relatively high levels of accuracy with minimal time spent adjusting network hyperparameters.Comment: 12 pages, 10 figures, originally presented at sdOB

    A convolutional neural network based deep learning methodology for recognition of partial discharge patterns from high voltage cables

    Get PDF
    It is a great challenge to differentiate partial discharge (PD) induced by different types of insulation defects in high-voltage cables. Some types of PD signals have very similar characteristics and are specifically difficult to differentiate, even for the most experienced specialists. To overcome the challenge, a convolutional neural network (CNN)-based deep learning methodology for PD pattern recognition is presented in this paper. First, PD testing for five types of artificial defects in ethylene-propylene-rubber cables is carried out in high voltage laboratory to generate signals containing PD data. Second, 3500 sets of PD transient pulses are extracted, and then 33 kinds of PD features are established. The third stage applies a CNN to the data; typical CNN architecture and the key factors which affect the CNN-based pattern recognition accuracy are described. Factors discussed include the number of the network layers, convolutional kernel size, activation function, and pooling method. This paper presents a flowchart of the CNN-based PD pattern recognition method and an evaluation with 3500 sets of PD samples. Finally, the CNN-based pattern recognition results are shown and the proposed method is compared with two more traditional analysis methods, i.e., support vector machine (SVM) and back propagation neural network (BPNN). The results show that the proposed CNN method has higher pattern recognition accuracy than SVM and BPNN, and that the novel method is especially effective for PD type recognition in cases of signals of high similarity, which is applicable for industrial applications
    • …
    corecore