917 research outputs found

    State-of-the-art in aerodynamic shape optimisation methods

    Get PDF
    Aerodynamic optimisation has become an indispensable component for any aerodynamic design over the past 60 years, with applications to aircraft, cars, trains, bridges, wind turbines, internal pipe flows, and cavities, among others, and is thus relevant in many facets of technology. With advancements in computational power, automated design optimisation procedures have become more competent, however, there is an ambiguity and bias throughout the literature with regards to relative performance of optimisation architectures and employed algorithms. This paper provides a well-balanced critical review of the dominant optimisation approaches that have been integrated with aerodynamic theory for the purpose of shape optimisation. A total of 229 papers, published in more than 120 journals and conference proceedings, have been classified into 6 different optimisation algorithm approaches. The material cited includes some of the most well-established authors and publications in the field of aerodynamic optimisation. This paper aims to eliminate bias toward certain algorithms by analysing the limitations, drawbacks, and the benefits of the most utilised optimisation approaches. This review provides comprehensive but straightforward insight for non-specialists and reference detailing the current state for specialist practitioners

    A Nested Genetic Algorithm for Explaining Classification Data Sets with Decision Rules

    Full text link
    Our goal in this paper is to automatically extract a set of decision rules (rule set) that best explains a classification data set. First, a large set of decision rules is extracted from a set of decision trees trained on the data set. The rule set should be concise, accurate, have a maximum coverage and minimum number of inconsistencies. This problem can be formalized as a modified version of the weighted budgeted maximum coverage problem, known to be NP-hard. To solve the combinatorial optimization problem efficiently, we introduce a nested genetic algorithm which we then use to derive explanations for ten public data sets

    A similarity measure for the cardinality constrained frontier in the mean-variance optimization model

    Full text link
    [EN] This paper proposes a new measure to find the cardinality constrained frontier in the meanvariance portfolio optimization problem. In previous research, assets belonging to the cardinality constrained portfolio change according to the desired level of expected return, so that the cardinality constraint can actually be violated if the fund manager wants to satisfy clients with different return requirements. We introduce a perceptual approach in the meanvariance cardinality constrained portfolio optimization problem by considering a novel similarity measure, which compares the cardinality constrained frontier with the unconstrained mean-variance frontier. We assume that the closer the cardinality constrained frontier to the mean-variance frontier, the more appealing it is for the decision maker. This makes the assets included in the portfolio invariant to any specific level of return, through focusing not on the optimal portfolio but on the optimal frontier.Guijarro, F. (2018). A similarity measure for the cardinality constrained frontier in the mean-variance optimization model. Journal of the Operational Research Society. 69(6):928-945. doi:10.1057/s41274-017-0276-6S92894569

    Power systems generation scheduling and optimisation using evolutionary computation techniques

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.Optimal generation scheduling attempts to minimise the cost of power production while satisfying the various operation constraints and physical limitations on the power system components. The thermal generation scheduling problem can be considered as a power system control problem acting over different time frames. The unit commitment phase determines the optimum pattern for starting up and shutting down the generating units over the designated scheduling period, while the economic dispatch phase is concerned with allocation of the load demand among the on-line generators. In a hydrothermal system the optimal scheduling of generation involves the allocation of generation among the hydro electric and thermal plants so as to minimise total operation costs of thermal plants while satisfying the various constraints on the hydraulic and power system network. This thesis reports on the development of genetic algorithm computation techniques for the solution of the short term generation scheduling problem for power systems having both thermal and hydro units. A comprehensive genetic algorithm modelling framework for thermal and hydrothermal scheduling problems using two genetic algorithm models, a canonical genetic algorithm and a deterministic crowding genetic algorithm, is presented. The thermal scheduling modelling framework incorporates unit minimum up and down times, demand and reserve constraints, cooling time dependent start up costs, unit ramp rates, and multiple unit operating states, while constraints such as multiple cascade hydraulic networks, river transport delays and variable head hydro plants, are accounted for in the hydraulic system modelling. These basic genetic algorithm models have been enhanced, using quasi problem decomposition, and hybridisation techniques, resulting in efficient generation scheduling algorithms. The results of the performance of the algorithms on small, medium and large scale power system problems is presented and compared with other conventional scheduling techniques.Overseas Development Agenc

    Application of Genetic Algorithm in Multi-objective Optimization of an Indeterminate Structure with Discontinuous Space for Support Locations

    Get PDF
    In this thesis, an indeterminate structure was developed with multiple competing objectives including the equalization of the load distribution among the supports while maximizing the stability of the structure. Two different coding algorithms named “Continuous Method” and “Discretized Method” were used to solve the optimal support locations using Genetic Algorithms (GAs). In continuous method, a continuous solution space was considered to find optimal support locations. The failure of this method to stick to the acceptable optimal solution led towards the development of the second method. The latter approach divided the solution space into rectangular grids, and GAs acted on the index number of the nodal points to converge to the optimality. The average value of the objective function in the discretized method was found to be 0.147 which was almost onethird of that obtained by the continuous method. The comparison based on individual components of the objective function also proved that the proposed method outperformed the continuous method. The discretized method also showed faster convergence to the optima. Three circular discontinuities were added to the structure to make it more realistic and three different penalty functions named flat, linear and non-linear penalty were used to handle the constraints. The performance of the two methods was observed with the penalty functions while increasing the radius of the circles by 25% and 50% which showed no significant difference. Later, the discretized method was coded to eliminate the discontinuous area from the solution space which made the application of the penalty functions redundant. A paired t-test (α=5%) showed no statistical difference between these two methods. Finally, to make the proposed method compatible with irregular shaped discontinuous areas, “FEA Integrated Coded Discretized Method (FEAICDM)” was developed. The manual elimination of the infeasible areas from the candidate surface was replaced by the nodal points of the mesh generated by Solid Works. A paired t-test (α=5%) showed no statistical difference between these two methods. Though FEAICDM was applied only to a class of problem, it can be concluded that FEAICDM is more robust and efficient than the continuous method for a class of constrained optimization problem
    • …
    corecore