1,679 research outputs found

    Connectivity-guaranteed and obstacle-adaptive deployment schemes for mobile sensor networks

    Get PDF
    Mobile sensors can relocate and self-deploy into a network. While focusing on the problems of coverage, existing deployment schemes largely over-simplify the conditions for network connectivity: they either assume that the communication range is large enough for sensors in geometric neighborhoods to obtain location information through local communication, or they assume a dense network that remains connected. In addition, an obstacle-free field or full knowledge of the field layout is often assumed. We present new schemes that are not governed by these assumptions, and thus adapt to a wider range of application scenarios. The schemes are designed to maximize sensing coverage and also guarantee connectivity for a network with arbitrary sensor communication/sensing ranges or node densities, at the cost of a small moving distance. The schemes do not need any knowledge of the field layout, which can be irregular and have obstacles/holes of arbitrary shape. Our first scheme is an enhanced form of the traditional virtual-force-based method, which we term the Connectivity-Preserved Virtual Force (CPVF) scheme. We show that the localized communication, which is the very reason for its simplicity, results in poor coverage in certain cases. We then describe a Floor-based scheme which overcomes the difficulties of CPVF and, as a result, significantly outperforms it and other state-of-the-art approaches. Throughout the paper our conclusions are corroborated by the results from extensive simulations

    Navigation Among Movable Obstacles via Multi-Object Pushing Into Storage Zones

    Get PDF
    With the majority of mobile robot path planning methods being focused on obstacle avoidance, this paper, studies the problem of Navigation Among Movable Obstacles (NAMO) in an unknown environment, with static (i.e., that cannot be moved by a robot) and movable (i.e., that can be moved by a robot) objects. In particular, we focus on a specific instance of the NAMO problem in which the obstacles have to be moved to predefined storage zones. To tackle this problem, we propose an online planning algorithm that allows the robot to reach the desired goal position while detecting movable objects with the objective to push them towards storage zones to shorten the planned path. Moreover, we tackle the challenging problem where an obstacle might block the movability of another one, and thus, a combined displacement plan needs to be applied. To demonstrate the new algorithm's correctness and efficiency, we report experimental results on various challenging path planning scenarios. The presented method has significantly better time performance than the baseline, while also introducing multiple novel functionalities for the NAMO problem
    • 

    corecore