7,589 research outputs found

    Adaptive two-pass rank order filter to remove impulse noise in highly corrupted images

    Get PDF
    This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. © 2004 IEEE.In this paper, we present an adaptive two-pass rank order filter to remove impulse noise in highly corrupted images. When the noise ratio is high, rank order filters, such as the median filter for example, can produce unsatisfactory results. Better results can be obtained by applying the filter twice, which we call two-pass filtering. To further improve the performance, we develop an adaptive two-pass rank order filter. Between the passes of filtering, an adaptive process is used to detect irregularities in the spatial distribution of the estimated impulse noise. The adaptive process then selectively replaces some pixels changed by the first pass of filtering with their original observed pixel values. These pixels are then kept unchanged during the second filtering. In combination, the adaptive process and the sec ond filter eliminate more impulse noise and restore some pixels that are mistakenly altered by the first filtering. As a final result, the reconstructed image maintains a higher degree of fidelity and has a smaller amount of noise. The idea of adaptive two-pass processing can be applied to many rank order filters, such as a center-weighted median filter (CWMF), adaptive CWMF, lower-upper-middle filter, and soft-decision rank-order-mean filter. Results from computer simulations are used to demonstrate the performance of this type of adaptation using a number of basic rank order filters.This work was supported in part by CenSSIS, the Center for Subsurface Sensing and Imaging Systems, under the Engineering Research Centers Program of the National Science Foundation (NSF) under Award EEC-9986821, by an ARO MURI on Demining under Grant DAAG55-97-1-0013, and by the NSF under Award 0208548

    A multiresolution framework for local similarity based image denoising

    Get PDF
    In this paper, we present a generic framework for denoising of images corrupted with additive white Gaussian noise based on the idea of regional similarity. The proposed framework employs a similarity function using the distance between pixels in a multidimensional feature space, whereby multiple feature maps describing various local regional characteristics can be utilized, giving higher weight to pixels having similar regional characteristics. An extension of the proposed framework into a multiresolution setting using wavelets and scale space is presented. It is shown that the resulting multiresolution multilateral (MRM) filtering algorithm not only eliminates the coarse-grain noise but can also faithfully reconstruct anisotropic features, particularly in the presence of high levels of noise

    An Efficient Approach of Removing the High Density Salt

    Get PDF
    Images are often corrupted by impulse noise, also known as salt and pepper noise. Salt and pepper noise can corrupt the images where the corrupted pixel takes either maximum or minimum gray level. Amongst these standard median filter has been established as reliable - method to remove the salt and pepper noise without harming the edge details. However, the major problem of standard Median Filter (MF) is that the filter is effective only at low noise densities. When the noise level is over 50% the edge details of the original image will not be preserved by standard median filter. Adaptive Median Filter (AMF) performs well at low noise densities. In our proposed method, first we apply the Stationary Wavelet Transform (SWT) for noise added image. It will separate into four bands like LL, LH, HL and HH. Further, we calculate the window size 3x3 for LL band image by Reading the pixels from the window, computing the minimum, maximum and median values from inside the window. Then we find out the noise and noise free pixels inside the window by applying our algorithm which replaces the noise pixels. The higher bands are smoothing by soft thresholding method. Then all the coefficients are decomposed by inverse stationary wavelet transform. The performance of the proposed algorithm is tested for various levels of noise corruption and compared with standard filters namely standard median filter (SMF), weighted median filter (WMF). Our proposed method performs well in removing low to medium density impulse noise with detail preservation up to a noise density of 70% and it gives better Peak Signal-to-Noise Ratio (PSNR) and Mean square error (MSE) values

    A COMPARATIVE STUDY OF IMAGE FILTERING ON VARIOUS NOISY PIXELS

    Get PDF
    This paper deals with the comparative study of research work done in the field of Image Filtering. Different noises can affect the image in different ways. Although various solutions are available for denoising them, a detail study of the research is required in order to design a filter which will fulfill the desire aspects along with handling most of the image filtering issues. An output image should be judged on the basis of Image Quality Metrics for ex-: Peak-Signal-to-Noise ratio (PSNR), Mean Squared Error (MSE) and Mean Absolute Error (MAE) and Execution Time
    corecore