5,660 research outputs found

    Unified clustering and communication protocol for wireless sensor networks

    Get PDF
    In this paper we present an energy-efficient cross layer protocol for providing application specific reservations in wireless senor networks called the “Unified Clustering and Communication Protocol ” (UCCP). Our modular cross layered framework satisfies three wireless sensor network requirements, namely, the QoS requirement of heterogeneous applications, energy aware clustering and data forwarding by relay sensor nodes. Our unified design approach is motivated by providing an integrated and viable solution for self organization and end-to-end communication is wireless sensor networks. Dynamic QoS based reservation guarantees are provided using a reservation-based TDMA approach. Our novel energy-efficient clustering approach employs a multi-objective optimization technique based on OR (operations research) practices. We adopt a simple hierarchy in which relay nodes forward data messages from cluster head to the sink, thus eliminating the overheads needed to maintain a routing protocol. Simulation results demonstrate that UCCP provides an energy-efficient and scalable solution to meet the application specific QoS demands in resource constrained sensor nodes. Index Terms — wireless sensor networks, unified communication, optimization, clustering and quality of service

    Applications of Repeated Games in Wireless Networks: A Survey

    Full text link
    A repeated game is an effective tool to model interactions and conflicts for players aiming to achieve their objectives in a long-term basis. Contrary to static noncooperative games that model an interaction among players in only one period, in repeated games, interactions of players repeat for multiple periods; and thus the players become aware of other players' past behaviors and their future benefits, and will adapt their behavior accordingly. In wireless networks, conflicts among wireless nodes can lead to selfish behaviors, resulting in poor network performances and detrimental individual payoffs. In this paper, we survey the applications of repeated games in different wireless networks. The main goal is to demonstrate the use of repeated games to encourage wireless nodes to cooperate, thereby improving network performances and avoiding network disruption due to selfish behaviors. Furthermore, various problems in wireless networks and variations of repeated game models together with the corresponding solutions are discussed in this survey. Finally, we outline some open issues and future research directions.Comment: 32 pages, 15 figures, 5 tables, 168 reference

    Effective Handover Technique in Cluster Based MANET Using Cooperative Communication

    Full text link
    Mobile ad hoc networks (MANETs) are becoming increasingly common now a days and typical network loads considered for MANETs are increasing as applications evolve. This increases the importance of bandwidth efficiency and requirements on energy consumption delay and jitter. Coordinated channel access protocols have been shown to be well suited for MANETs under uniform load distributions. However, these protocols are not well suited for non-uniform load distributions as uncoordinated channel access protocols due to the lack of on-demand dynamic channel allocation mechanisms that exist in infrastructure based coordinated protocols. We have considered a lightweight dynamic channel allocation algorithm and a cooperative load balancing strategy that are helpful for the cluster based MANETs and an effective handover technique to improve the increased packet transmission mechanism. This helps in reduce jitter, packet delay and packet transfer speed, we use a novel handover algorithm to address this problem We present protocols that utilize these mechanisms to improve performance in terms of throughput, energy consumption and inter-packet delay variation (IPDV)

    CMD: A Multi-Channel Coordination Scheme for Emergency Message Dissemination in IEEE 1609.4

    Full text link
    In the IEEE 1609.4 legacy standard for multi-channel communications in vehicular ad hoc networks(VANETs), the control channel (CCH) is dedicated to broadcast safety messages while the service channels (SCH's) are dedicated to transmit infotainment service content. However, the SCH can be used as an alternative to transmit high priority safety messages in the event that they are invoked during the service channel interval (SCHI). This implies that there is a need to transmit safety messages across multiple available utilized channels to ensure that all vehicles receive the safety message. Transmission across multiple SCH's using the legacy IEEE 1609.4 requires multiple channel switching and therefore introduces further end-to-end delays. Given that safety messaging is a life critical application, it is important that optimal end-to-end delay performance is derived in multi-channel VANET scenarios to ensure reliable safety message dissemination. To tackle this challenge, three primary contributions are in this article: first, a channel coordinator selection approach based on the least average separation distance (LAD) to the vehicles that expect to tune to other SCH's and operates during the control channel interval (CCHI) is proposed. Second, a model to determine the optimal time intervals in which CMD operates during the CCHI is proposed. Third, a contention back-off mechanism for safety message transmission during the SCHI is proposed. Computer simulations and mathematical analysis show that CMD performs better than the legacy IEEE 1609.4 and a selected state-of-the-art multi-channel message dissemination schemes in terms of end-to-end delay and packet reception ratio.Comment: 15 pages, 10 figures, 7 table

    Time division multiple access scheduling strategies for emerging vehicular ad hoc network medium access control protocols: a survey

    Full text link
    [EN] Vehicular ad hoc network (VANET) is an emerging and promising technology, which allows vehicles while moving on the road to communicate and share resources. These resources are aimed at improving traffic safety and providing comfort to drivers and passengers. The resources use applications that have to meet high reliability and delay constraints. However, to implement these applications, VANET relies on medium access control (MAC) protocol. Many approaches have been proposed in the literature using time division multiple access (TDMA) scheme to enhance the efficiency of MAC protocol. Nevertheless, this technique has encountered some challenges including access and merging collisions due to inefficient time slot allocation strategy and hidden terminal problem. Despite several attempts to study this class of protocol, issues such as channel access and time slot scheduling strategy have not been given much attention. In this paper, we have relatively examined the most prominent TDMA MAC protocols which were proposed in the literature from 2010 to 2018. These protocols were classified based on scheduling strategy and the technique adopted. Also, we have comparatively analyzed them based on different parameters and performance metrics used. Finally, some open issues are presented for future deployment.Tambawal, AB.; Noor, RM.; Salleh, R.; Chembe, C.; Anisi, MH.; Michael, O.; Lloret, J. (2019). Time division multiple access scheduling strategies for emerging vehicular ad hoc network medium access control protocols: a survey. Telecommunication Systems. 70(4):595-616. https://doi.org/10.1007/s11235-018-00542-8S59561670

    Joint Head Selection and Airtime Allocation for Data Dissemination in Mobile Social Networks

    Full text link
    Mobile social networks (MSNs) enable people with similar interests to interact without Internet access. By forming a temporary group, users can disseminate their data to other interested users in proximity with short-range communication technologies. However, due to user mobility, airtime available for users in the same group to disseminate data is limited. In addition, for practical consideration, a star network topology among users in the group is expected. For the former, unfair airtime allocation among the users will undermine their willingness to participate in MSNs. For the latter, a group head is required to connect other users. These two problems have to be properly addressed to enable real implementation and adoption of MSNs. To this aim, we propose a Nash bargaining-based joint head selection and airtime allocation scheme for data dissemination within the group. Specifically, the bargaining game of joint head selection and airtime allocation is first formulated. Then, Nash bargaining solution (NBS) based optimization problems are proposed for a homogeneous case and a more general heterogeneous case. For both cases, the existence of solution to the optimization problem is proved, which guarantees Pareto optimality and proportional fairness. Next, an algorithm, allowing distributed implementation, for join head selection and airtime allocation is introduced. Finally, numerical results are presented to evaluate the performance, validate intuitions and derive insights of the proposed scheme
    • …
    corecore