58 research outputs found

    Full duplex-transceivers : architectures and performance analysis

    Get PDF
    PhD ThesisThe revolution of the 5G communication systems will result in 10,000 times increase in the total mobile broadband traffic in the 2020s, which will increase the demand on the limited wireless spectrum. This has highlighted the need for an efficient frequency-reuse technique that can meet the ever-increasing demand on the available frequency resources. In-band full-duplex (FD) wireless technology that enables the transceiver nodes to transmit and receive simultaneously over the same frequency band, has gained tremendous attention as a promising technology to double the spectral efficiency of the traditional half-duplex (HD) systems. However, this technology faces a formidable challenge, that is the large power difference between the self-interference (SI) signal and the signal of interest from a remote transceiver node. In this thesis, we focus on the architecture of the FD transceivers and investigate their ability to approximately double the throughput and the spectral efficiency of the conventional HD systems. Moreover, this thesis is concerned with the design of efficient self-interference cancellation schemes that can be combined with the architecture of the FD transceiver nodes in order to effectively suppress the SI signal and enable the FD mode. In particular, an orthogonal frequency-division multiplexing (OFDM) based amplify-and-forward (AF) FD physical-layer network coding (PLNC) system is proposed. To enable the FD mode in the proposed system, a hybrid SIC scheme that is a combination of passive SIC mechanism and active SIC technique is exploited at each transceiver node of that system. Next, we propose an adaptive SIC scheme, which utilizes the normalized least-mean-square (NLMS) algorithm to effectively suppress the SI signal to the level of the noise floor. The proposed adaptive SIC is then utilized in a denoise-and-forward (DNF) FD-PLNC system to enable the FD mode. Finally, we introduce a novel overthe- air SIC scheme that can effectively mitigate the SI signal before it arrives the local analog-to-digital converter (ADC) of the FD transceiver nodes. Furthermore, the impact of the hardware impairments on the performance of the introduced SIC scheme is examined and characterized.Iraq, and the Ministry of Higher Education and Scientific Research (MOHSR

    Bidirectional Cooperative Relaying

    Get PDF

    Adaptive relay techniques for OFDM-based cooperative communication systems

    Get PDF
    Cooperative communication has been considered as a cost-effective manner to exploit the spatial diversity, improve the quality-of-service and extend transmission coverage. However, there are many challenges faced by cooperative systems which use relays to forward signals to the destination, such as the accumulation of multipath channels, complex resource allocation with the bidirectional asymmetric traffic and reduction of transmission efficiency caused by additional relay overhead. In this thesis, we aim to address the above challenges of cooperative communications, and design the efficient relay systems. Starting with the channel accumulation problem in the amplify-and-forward relay system, we proposed two adaptive schemes for single/multiple-relay networks respectively. These schemes exploit an adaptive guard interval (GI) technique to cover the accumulated delay spread and enhance the transmission efficiency by limiting the overhead. The proposed GI scheme can be implemented without any extra control signal. Extending the adaptive GI scheme to multiple-relay systems, we propose a relay selection strategy which achieves the trade-off between the transmission reliability and overhead by considering both the channel gain and the accumulated delay spread. We then consider resource allocation problem in the two-way decode-and-forward relay system with asymmetric traffic loads. Two allocation algorithms are respectively investigated for time-division and frequency-division relay systems to maximize the end-to-end capacity of the two-way system under a capacity ratio constraint. For the frequency-division systems, a balanced end-to-end capacity is defined as the objective function which combines the requirements of maximizing the end-to-end capacity and achieving the capacity ratio. A suboptimal algorithm is proposed for the frequency-division systems which separates subcarrier allocation and time/power allocation. It can achieve the similar performance with the optimal one with reduced complexity. In order to further enhance the transmission reliability and maintaining low processing delay, we propose an equalize-and-forward (EF) relay scheme. The EF relay equalizes the channel between source and relay to eliminate the channel accumulation without signal regeneration. To reduce the processing time, an efficient parallel structure is applied in the EF relay. Numerical results show that the EF relay exhibits low outage probability at the same data rate as compared to AF and DF schemes

    Fair and optimal resource allocation in wireless sensor networks

    Get PDF
    There is a large amount of research in wireless networks focuses on optimization of either network routing and power control alone. In contrast, this work aims at jointly optimizing the transmission power and routing path selection in order to optimize allocation of resources in interference constrained wireless environment. Moreover, we consider a multipath routing where multiple alternative paths are employed to transmit data between the end nodes. One of modern communication techniques that it applies to a network coding, though not explicitly implemented in this work. The proposed approach is first analyzed theoretically using Lagrangian optimization for a three-node scenario. We analyze this basic scenario, as it is essential for development of the overall multi-path routing schemes for multi-hop networks. The optimal solution for the three-node topology is replicated throughout the network to converge to a network-level solution. In contrast to existing studies, we explicitly consider interference from adjacent links, which varies with traffic flow thus optimizing the routing, and flow control decisions. The results and conclusions provide guidance as to the optimum routing decisions and a corresponding theoretical performance limits. The optimization of the throughput of the wireless network scenario is considered as a multi-variable optimization problem subject to flow and power constraints. Numerical analysis performed in Matlab-Simulink indicates that, given loose outage constraints, an optimal trade-off between the channel parameters renders optimum results even when the gain of the channel varies with time. The theoretical analysis and simulations demonstrate and validate that the channel capacity and efficiency are maximized when the routing decisions consider the network performance trade-offs. Next, the proposed routing and power control scheme is experimentally evaluated in hardware using universal software radio peripheral (USRP2). The USRP testbed utilizes the proposed multi-variable optimization algorithm. The communication system is implemented using GNU Radio software where the physical layer employs two direct-spread spectrum variants: (a) binary phase shift keying (DS-BPSK) and (b) orthogonal frequency division modulation (DS-OFDM) schemes. The experimental results are compared with the simulation results --Abstract, page iii

    Advanced Wireless LAN

    Get PDF
    The past two decades have witnessed starling advances in wireless LAN technologies that were stimulated by its increasing popularity in the home due to ease of installation, and in commercial complexes offering wireless access to their customers. This book presents some of the latest development status of wireless LAN, covering the topics on physical layer, MAC layer, QoS and systems. It provides an opportunity for both practitioners and researchers to explore the problems that arise in the rapidly developed technologies in wireless LAN

    Backscatter Communication: Design and Optimisation For Emerging Use-Cases

    Get PDF
    Backscatter communication (BackCom) holds significant potential to improve the pervasiveness and energy efficiency of future wireless networks, through its passive modulation and reuse of existing radiofrequency signals. In order to function as a key technology under the Internet of Things paradigm, issues relating to BackCom, such as its limited coverage and deployment flexibility, low data rates, and the difficulty of channel estimation, need to be addressed. To complement this, a wider range of use-cases and deployment scenarios also need to be established. This thesis focuses on addressing these issues inherent to BackCom, by exploring a series of system setups which push the boundaries in terms of coverage and flexible deployment, and then future-proofs BackCom through the study of the assistance from another emerging technology, the intelligent reflecting surface (IRS). The first half of the thesis focuses on the coverage and deployment flexibility of BackCom devices under conventional wireless communication settings. First, we study a novel use-case in which BackCom devices replace conventional, actively transmitting relays to assist an information transmission from a source to a destination. We introduce the decode-and-forward (DF) BackCom relaying scheme and perform a detailed bit error rate (BER) characterisation of the DF BackCom scheme alongside the amplify-and-forward (AF) BackCom 'reflection' scheme. The feasibility and practical range of the BackCom relay is demonstrated through a case study, and our findings indicate that with careful selection of relay parameters, the DF scheme can improve the functionality of BackCom relays through the decoding operation, while resulting in minimal BER differences compared to the AF 'reflection' scheme. Second, we study the coverage maximisation of bistatic BackCom systems in wide-area environmental monitoring applications through judicious power beacon (PB) placement. We propose a straightforward metric to characterise coverage, the guaranteed coverage distance (GCD), to overcome the complex shape of each PB's coverage area when the performance of the BackCom link is dependent on the strength of the energy transfer link. We find that a single-tier symmetric deployment of PBs performs favourably under a practical number (24 or less) of PBs, with a GCD of more than 100m being readily achievable. The second half of the thesis studies the incorporation of the IRS into BackCom systems, with the aim of improving BackCom performance. The IRS-assisted bistatic BackCom system is studied first, where we solve a transmit power minimisation problem at the carrier emitter involving the joint optimisation of the transmit and receive beamforming, the IRS phase shifts and the BackCom splitting coefficients. We present a unique signal model arising from this system, where a signal originating from the carrier emitter may be reflected by the IRS twice before reaching the reader, and account for this added complexity in our algorithm design. Our results indicate that transmit power savings of over 6 dB may be achieved with a moderately-sized IRS, which may be converted to nearly 50m of range increase. Then, we study the use of the IRS in an ambient BackCom system, with the goal of reducing direct-link interference and improving detection performance. We assume the absence of all ambient signal and channel knowledge, which is a practical assumption given the passively reflecting nature of both BackCom devices and IRSs. We propose a deep reinforcement learning (DRL)-based algorithm which maximises the backscatter channel difference (that is, the ratio of the energies of the direct-link interference and overall received signal) based on instantaneous signal samples, which may be converted to BER reductions. We find that the DRL approach with no channel knowledge can achieve a backscatter channel difference within 25% of that obtained using benchmarks with full channel knowledge

    Radio Communications

    Get PDF
    In the last decades the restless evolution of information and communication technologies (ICT) brought to a deep transformation of our habits. The growth of the Internet and the advances in hardware and software implementations modified our way to communicate and to share information. In this book, an overview of the major issues faced today by researchers in the field of radio communications is given through 35 high quality chapters written by specialists working in universities and research centers all over the world. Various aspects will be deeply discussed: channel modeling, beamforming, multiple antennas, cooperative networks, opportunistic scheduling, advanced admission control, handover management, systems performance assessment, routing issues in mobility conditions, localization, web security. Advanced techniques for the radio resource management will be discussed both in single and multiple radio technologies; either in infrastructure, mesh or ad hoc networks
    corecore