585 research outputs found

    SUBIC: A Supervised Bi-Clustering Approach for Precision Medicine

    Full text link
    Traditional medicine typically applies one-size-fits-all treatment for the entire patient population whereas precision medicine develops tailored treatment schemes for different patient subgroups. The fact that some factors may be more significant for a specific patient subgroup motivates clinicians and medical researchers to develop new approaches to subgroup detection and analysis, which is an effective strategy to personalize treatment. In this study, we propose a novel patient subgroup detection method, called Supervised Biclustring (SUBIC) using convex optimization and apply our approach to detect patient subgroups and prioritize risk factors for hypertension (HTN) in a vulnerable demographic subgroup (African-American). Our approach not only finds patient subgroups with guidance of a clinically relevant target variable but also identifies and prioritizes risk factors by pursuing sparsity of the input variables and encouraging similarity among the input variables and between the input and target variable

    Techniques for clustering gene expression data

    Get PDF
    Many clustering techniques have been proposed for the analysis of gene expression data obtained from microarray experiments. However, choice of suitable method(s) for a given experimental dataset is not straightforward. Common approaches do not translate well and fail to take account of the data profile. This review paper surveys state of the art applications which recognises these limitations and implements procedures to overcome them. It provides a framework for the evaluation of clustering in gene expression analyses. The nature of microarray data is discussed briefly. Selected examples are presented for the clustering methods considered

    On bicluster aggregation and its benefits for enumerative solutions

    Full text link
    Biclustering involves the simultaneous clustering of objects and their attributes, thus defining local two-way clustering models. Recently, efficient algorithms were conceived to enumerate all biclusters in real-valued datasets. In this case, the solution composes a complete set of maximal and non-redundant biclusters. However, the ability to enumerate biclusters revealed a challenging scenario: in noisy datasets, each true bicluster may become highly fragmented and with a high degree of overlapping. It prevents a direct analysis of the obtained results. To revert the fragmentation, we propose here two approaches for properly aggregating the whole set of enumerated biclusters: one based on single linkage and the other directly exploring the rate of overlapping. Both proposals were compared with each other and with the actual state-of-the-art in several experiments, and they not only significantly reduced the number of biclusters but also consistently increased the quality of the solution.Comment: 15 pages, will be published by Springer Verlag in the LNAI Series in the book Advances in Data Minin

    Profile Likelihood Biclustering

    Full text link
    Biclustering, the process of simultaneously clustering the rows and columns of a data matrix, is a popular and effective tool for finding structure in a high-dimensional dataset. Many biclustering procedures appear to work well in practice, but most do not have associated consistency guarantees. To address this shortcoming, we propose a new biclustering procedure based on profile likelihood. The procedure applies to a broad range of data modalities, including binary, count, and continuous observations. We prove that the procedure recovers the true row and column classes when the dimensions of the data matrix tend to infinity, even if the functional form of the data distribution is misspecified. The procedure requires computing a combinatorial search, which can be expensive in practice. Rather than performing this search directly, we propose a new heuristic optimization procedure based on the Kernighan-Lin heuristic, which has nice computational properties and performs well in simulations. We demonstrate our procedure with applications to congressional voting records, and microarray analysis.Comment: 40 pages, 11 figures; R package in development at https://github.com/patperry/biclustp
    corecore