940 research outputs found

    Security and Privacy Issues in Wireless Mesh Networks: A Survey

    Full text link
    This book chapter identifies various security threats in wireless mesh network (WMN). Keeping in mind the critical requirement of security and user privacy in WMNs, this chapter provides a comprehensive overview of various possible attacks on different layers of the communication protocol stack for WMNs and their corresponding defense mechanisms. First, it identifies the security vulnerabilities in the physical, link, network, transport, application layers. Furthermore, various possible attacks on the key management protocols, user authentication and access control protocols, and user privacy preservation protocols are presented. After enumerating various possible attacks, the chapter provides a detailed discussion on various existing security mechanisms and protocols to defend against and wherever possible prevent the possible attacks. Comparative analyses are also presented on the security schemes with regards to the cryptographic schemes used, key management strategies deployed, use of any trusted third party, computation and communication overhead involved etc. The chapter then presents a brief discussion on various trust management approaches for WMNs since trust and reputation-based schemes are increasingly becoming popular for enforcing security in wireless networks. A number of open problems in security and privacy issues for WMNs are subsequently discussed before the chapter is finally concluded.Comment: 62 pages, 12 figures, 6 tables. This chapter is an extension of the author's previous submission in arXiv submission: arXiv:1102.1226. There are some text overlaps with the previous submissio

    Efficient Security Protocols for Fast Handovers in Wireless Mesh Networks

    Get PDF
    Wireless mesh networks (WMNs) are gaining popularity as a flexible and inexpensive replacement for Ethernet-based infrastructures. As the use of mobile devices such as smart phones and tablets is becoming ubiquitous, mobile clients should be guaranteed uninterrupted connectivity and services as they move from one access point to another within a WMN or between networks. To that end, we propose a novel security framework that consists of a new architecture, trust models, and protocols to offer mobile clients seamless and fast handovers in WMNs. The framework provides a dynamic, flexible, resource-efficient, and secure platform for intra-network and inter-network handovers in order to support real-time mobile applications in WMNs. In particular, we propose solutions to the following problems: authentication, key management, and group key management. We propose (1) a suite of certificate-based authentication protocols that minimize the authentication delay during handovers from one access point to another within a network (intra-network authentication). (2) a suite of key distribution and authentication protocols that minimize the authentication delay during handovers from one network to another (inter-network authentication). (3) a new implementation of group key management at the data link layer in order to reduce the group key update latency from linear time (as currently done in IEEE 802.11 standards) to logarithmic time. This contributes towards minimizing the latency of the handover process for mobile members in a multicast or broadcast group

    HUC-HISF: A Hybrid Intelligent Security Framework for Human-centric Ubiquitous Computing

    Get PDF
    制度:新 ; 報告番号:乙2336号 ; 学位の種類:博士(人間科学) ; 授与年月日:2012/1/18 ; 早大学位記番号:新584

    A network-based coordination design for seamless handover between heterogeneous wireless networks

    Get PDF
    Includes bibliographical references (leaves 136-144).The rapid growth of mobile and wireless communication over the last few years has spawned many different wireless networks. These heterogeneous wireless networks are envisioned to interwork over an IP-based infrastructure to realize ubiquitous network service provisioning for mobile users. Moreover, the availability of multiple-interface mobile nodes (MNs) will make it possible to communicate through any of these wireless access networks. This wireless network heterogeneity combined with the availability of multiple-interface MNs creates an environment where handovers between the different wireless access technologies become topical during mobility events. Therefore, operators with multiple interworking heterogeneous wireless networks will need to facilitate seamless vertical handovers among their multiple systems. Seamless vertical handovers ensure ubiquitous continuity to active connections hence satisfy the quality of experience of the mobile users

    An eco-friendly hybrid urban computing network combining community-based wireless LAN access and wireless sensor networking

    Get PDF
    Computer-enhanced smart environments, distributed environmental monitoring, wireless communication, energy conservation and sustainable technologies, ubiquitous access to Internet-located data and services, user mobility and innovation as a tool for service differentiation are all significant contemporary research subjects and societal developments. This position paper presents the design of a hybrid municipal network infrastructure that, to a lesser or greater degree, incorporates aspects from each of these topics by integrating a community-based Wi-Fi access network with Wireless Sensor Network (WSN) functionality. The former component provides free wireless Internet connectivity by harvesting the Internet subscriptions of city inhabitants. To minimize session interruptions for mobile clients, this subsystem incorporates technology that achieves (near-)seamless handover between Wi-Fi access points. The WSN component on the other hand renders it feasible to sense physical properties and to realize the Internet of Things (IoT) paradigm. This in turn scaffolds the development of value-added end-user applications that are consumable through the community-powered access network. The WSN subsystem invests substantially in ecological considerations by means of a green distributed reasoning framework and sensor middleware that collaboratively aim to minimize the network's global energy consumption. Via the discussion of two illustrative applications that are currently being developed as part of a concrete smart city deployment, we offer a taste of the myriad of innovative digital services in an extensive spectrum of application domains that is unlocked by the proposed platform

    Zero-configuration identity-based IP network encryptor

    Get PDF
    For corporations or individuals who wish to protect the confidentiality of their data across computer networks, network-layer encryption offers an efficient and proven method for preserving data privacy. Network layer encryption such as IPSec is more flexible than higher layer solutions since it is not application-dependent and can protect all end-to-end traffics that go between two hosts. Using IPSec, two hosts must first establish a session key through message exchanges before they can communicate. In this paper, we present an Identity Based Encryption (IBE) scheme that allows a host to calculate the per-packet encryption key based on the IP address of the destination host, without going through the expensive key exchange process as in IPSec. Our mechanism is compatible with the current IP protocol and we tested our scheme with live HTTP and ICMP traffic. Our results show that our protocol provides a zero-configuration network layer encryption solution for end-to-end secure communications that is ideal for consumer electronics applications. © 2006 IEEE.published_or_final_versio

    Secure and seamless prepayment for wireless mesh networks

    Get PDF
    Wireless Mesh Network (WMN) is multi-hop high-speed networking technology for broadband access. Compared to conventional network service providing systems, WMNs are easy to deploy and cost-effective. In this thesis, we propose a secure and seamless prepayment system for the Internet access through WMNs (SSPayWMN). Practical payment systems for network access generally depend on trustworthiness of service provider. However, in real life, service providers may unintentionally overcharge their clients. This misbehavior in the system may cause disputes between the clients and the service providers. Even if the service provider is rightful, it is very difficult to convince the customer since the service providers generally do not have justifiable proofs that can easily be denied by the clients. The main goal of SSPayWMN is to provide a secure payment scheme, which is fair to both operators and clients. Using cryptographic tools and techniques, all system entities are able to authenticate each other and provide/get service in an undeniable way. Moreover, SSPayWMN provides privacy and untraceability in order not to track down particular user’s network activities. We implemented SSPayWMN on a network simulator (ns-3) and performed performance evaluation to understand the latency caused by the system's protocols. Our results show that our protocols achieve low steady state latency and in overall put very little burden on the system

    Multi-layer traffic control for wireless networks

    Get PDF
    Le reti Wireless LAN, così come definite dallo standard IEEE 802.11, garantiscono connettività senza fili nei cosiddetti “hot-spot” (aeroporti, hotel, etc.), nei campus universitari, nelle intranet aziendali e nelle abitazioni. In tali scenari, le WLAN sono denotate come “ad infrastruttura” nel senso che la copertura della rete è basata sulla presenza di un “Access Point” che fornisce alle stazioni mobili l’accesso alla rete cablata. Esiste un ulteriore approccio (chiamato “ad-hoc”) in cui le stazioni mobili appartenenti alla WLAN comunicano tra di loro senza l’ausilio dell’Access Point. Le Wireless LAN tipicamente sono connesse alla rete di trasporto (che essa sia Internet o una Intranet aziendale) usando un’infrastruttura cablata. Le reti wireless Mesh ad infrastruttura (WIMN) rappresentano un’alternativa valida e meno costosa alla classica infrastruttura cablata. A testimonianza di quanto appena affermato vi è la comparsa e la crescita sul mercato di diverse aziende specializzate nella fornitura di infrastrutture di trasporto wireless e il lancio di varie attività di standardizzazione (tra cui spicca il gruppo 802.11s). La facilità di utilizzo, di messa in opera di una rete wireless e i costi veramente ridotti hanno rappresentato fattori critici per lo straordinario successo di tale tecnologia. Di conseguenza possiamo affermare che la tecnologia wireless ha modificato lo stile di vita degli utenti, il modo di lavorare, il modo di passare il tempo libero (video conferenze, scambio foto, condivisione di brani musicali, giochi in rete, messaggistica istantanea ecc.). D’altro canto, lo sforzo per garantire lo sviluppo di reti capaci di supportare servizi dati ubiqui a velocità di trasferimento elevate è strettamente legato a numerose sfide tecniche tra cui: il supporto per l’handover tra differenti tecnologie (WLAN/3G), la certezza di accesso e autenticazione sicure, la fatturazione e l’accounting unificati, la garanzia di QoS ecc. L’attività di ricerca svolta nell’arco del Dottorato si è focalizzata sulla definizione di meccanismi multi-layer per il controllo del traffico in reti wireless. In particolare, nuove soluzioni di controllo del traffico sono state realizzate a differenti livelli della pila protocollare (dallo strato data-link allo strato applicativo) in modo da fornire: funzionalità avanzate (autenticazione sicura, differenziazione di servizio, handover trasparente) e livelli soddisfacenti di Qualità del Servizio. La maggior parte delle soluzioni proposte in questo lavoro di tesi sono state implementate in test-bed reali. Questo lavoro riporta i risultati della mia attività di ricerca ed è organizzato nel seguente modo: ogni capitolo presenta, ad uno specifico strato della pila protocollare, un meccanismo di controllo del traffico con l’obiettivo di risolvere le problematiche presentate precedentemente. I Capitoli 1 e 2 fanno riferimento allo strato di Trasporto ed investigano il problema del mantenimento della fairness per le connessioni TCP. L’unfairness TCP conduce ad una significativa degradazione delle performance implicando livelli non soddisfacenti di QoS. Questi capitoli descrivono l’attività di ricerca in cui ho impiegato il maggior impegno durante gli studi del dottorato. Nel capitolo 1 viene presentato uno studio simulativo delle problematiche di unfairness TCP e vengono introdotti due possibili soluzioni basate su rate-control. Nel Capitolo 2 viene derivato un modello analitico per la fairness TCP e si propone uno strumento per la personalizzazione delle politiche di fairness. Il capitolo 3 si focalizza sullo strato Applicativo e riporta diverse soluzioni di controllo del traffico in grado di garantire autenticazione sicura in scenari di roaming tra provider wireless. Queste soluzioni rappresentano parte integrante del framework UniWireless, un testbed nazionale sviluppato nell’ambito del progetto TWELVE. Il capitolo 4 descrive, nuovamente a strato Applicativo, una soluzione (basata su SIP) per la gestione della mobilità degli utenti in scenari di rete eterogenei ovvero quando diverse tecnologie di accesso radio sono presenti (802.11/WiFi, Bluetooth, 2.5G/3G). Infine il Capitolo 5 fa riferimento allo strato Data-Link presentando uno studio preliminare di un approccio per il routing e il load-balancing in reti Mesh infrastrutturate.Wireless LANs, as they have been defined by the IEEE 802.11 standard, are shared media enabling connectivity in the so-called “hot-spots” (airports, hotel lounges, etc.), university campuses, enterprise intranets, as well as “in-home” for home internet access. With reference to the above scenarios, WLANs are commonly denoted as “infra-structured” in the sense that WLAN coverage is based on “Access Points” which provide the mobile stations with access to the wired network. In addition to this approach, there exists also an “ad-hoc” mode to organize WLANs where mobile stations talk to each other without the need of Access Points. Wireless LANs are typically connected to the wired backbones (Internet or corporate intranets) using a wired infrastructure. Wireless Infrastructure Mesh Networks (WIMN) may represent a viable and cost-effective alternative to this traditional wired approach. This is witnessed by the emergence and growth of many companies specialized in the provisioning of wireless infrastructure solutions, as well as the launch of standardization activities (such as 802.11s). The easiness of deploying and using a wireless network, and the low deployment costs have been critical factors in the extraordinary success of such technology. As a logical consequence, the wireless technology has allowed end users being connected everywhere – every time and it has changed several things in people’s lifestyle, such as the way people work, or how they live their leisure time (videoconferencing, instant photo or music sharing, network gaming, etc.). On the other side, the effort to develop networks capable of supporting ubiquitous data services with very high data rates in strategic locations is linked with many technical challenges including seamless vertical handovers across WLAN and 3G radio technologies, security, 3G-based authentication, unified accounting and billing, consistent QoS and service provisioning, etc. My PhD research activity have been focused on multi-layer traffic control for Wireless LANs. In particular, specific new traffic control solutions have been designed at different layers of the protocol stack (from the link layer to the application layer) in order to guarantee i) advanced features (secure authentication, service differentiation, seamless handover) and ii) satisfactory level of perceived QoS. Most of the proposed solutions have been also implemented in real testbeds. This dissertation presents the results of my research activity and is organized as follows: each Chapter presents, at a specific layer of the protocol stack, a traffic control mechanism in order to address the introduced above issues. Chapter 1 and Charter 2 refer to the Transport Layer, and they investigate the problem of maintaining fairness for TCP connections. TCP unfairness may result in significant degradation of performance leading to users perceiving unsatisfactory Quality of Service. These Chapters describe the research activity in which I spent the most significant effort. Chapter 1 proposes a simulative study of the TCP fairness issues and two different solutions based on Rate Control mechanism. Chapter 2 illustrates an analytical model of the TCP fairness and derives a framework allowing wireless network providers to customize fairness policies. Chapter 3 focuses on the Application Layer and it presents new traffic control solutions able to guarantee secure authentication in wireless inter-provider roaming scenarios. These solutions are an integral part of the UniWireless framework, a nationwide distributed Open Access testbed that has been jointly realized by different research units within the TWELVE national project. Chapter 4 describes again an Application Layer solution, based on Session Initiation Protocol to manage user mobility and provide seamless mobile multimedia services in a heterogeneous scenario where different radio access technologies are used (802.11/WiFi, Bluetooth, 2.5G/3G networks). Finally Chapter 5 refers to the Data Link Layer and presents a preliminary study of a general approach for routing and load balancing in Wireless Infrastructure Mesh Network. The key idea is to dynamically select routes among a set of slowly changing alternative network paths, where paths are created through the reuse of classical 802.1Q multiple spanning tree mechanisms
    corecore