154 research outputs found

    An integrated intelligent nonlinear control method for a pneumatic artificial muscle

    Get PDF
    This paper proposes an advanced position-tracking control approach, referred to as an integrated intelligent nonlinear controller, for a pneumatic artificial muscle (PAM) system. Due to the existence of uncertain, unknown, and nonlinear terms in the system dynamics, it is difficult to derive an exact mathematical model with robust control performance. To overcome this problem, the main contributions of this paper are as follows. To actively represent the behavior of the PAM system using a grey-box model, neural networks are employed as equivalent internal dynamics of the system model and optimized online by a Lyapunov-based method. To realize the control objective by effectively compensating for the estimation error, an advanced robust controller is developed from the integration of the designed networks, and improvement of the sliding mode and backstepping techniques. The convergences of both the developed model and the closed-loop control system are guaranteed by Lyapunov functions. As a result, the overall control approach is capable of ensuring the system's performance with fast response, high accuracy, and robustness. Real-time experiments are carried out in a PAM system under different conditions to validate the effectiveness of the proposed method

    An Integrated Intelligent Nonlinear Control Method for a Pneumatic Artificial Muscle

    Full text link

    Design and control of soft rehabilitation robots actuated by pneumatic muscles: State of the art

    Get PDF
    Robot-assisted rehabilitation has become a new mainstream trend for the treatment of stroke patients with movement disability. Pneumatic muscle (PM) is one of the most promising actuators for rehabilitation robots, due to its inherent compliance and safety features. In this paper, we conduct a systematic review on the soft rehabilitation robots driven by pneumatic muscles. This review discusses up to date mechanical structures and control strategies for PMs-actuated rehabilitation robots. A variety of state-of-the-art soft rehabilitation robots are classified and reviewed according to the actuation configurations. Special attentions are paid to control strategies under different mechanical designs, with advanced control approaches to overcome PM’s highly nonlinear and time-varying behaviors and to enhance the adaptability to different patients. Finally, we analyze and highlight the current research gaps and the future directions in this field, which is potential for providing a reliable guidance on the development of advanced soft rehabilitation robots

    Adaptive control of compliant robots with Reservoir Computing

    Get PDF
    In modern society, robots are increasingly used to handle dangerous, repetitive and/or heavy tasks with high precision. Because of the nature of the tasks, either being dangerous, high precision or simply repetitive, robots are usually constructed with high torque motors and sturdy materials, that makes them dangerous for humans to handle. In a car-manufacturing company, for example, a large cage is placed around the robot’s workspace that prevents humans from entering its vicinity. In the last few decades, efforts have been made to improve human-robot interaction. Often the movement of robots is characterized as not being smooth and clearly dividable into sub-movements. This makes their movement rather unpredictable for humans. So, there exists an opportunity to improve the motion generation of robots to enhance human-robot interaction. One interesting research direction is that of imitation learning. Here, human motions are recorded and demonstrated to the robot. Although the robot is able to reproduce such movements, it cannot be generalized to other situations. Therefore, a dynamical system approach is proposed where the recorded motions are embedded into the dynamics of the system. Shaping these nonlinear dynamics, according to recorded motions, allows for dynamical system to generalize beyond demonstration. As a result, the robot can generate motions of other situations not included in the recorded human demonstrations. In this dissertation, a Reservoir Computing approach is used to create a dynamical system in which such demonstrations are embedded. Reservoir Computing systems are Recurrent Neural Network-based approaches that are efficiently trained by considering only the training of the readout connections and retaining all other connections of such a network unchanged given their initial randomly chosen values. Although they have been used to embed periodic motions before, they were extended to embed discrete motions, or both. This work describes how such a motion pattern-generating system is built, investigates the nature of the underlying dynamics and evaluates their robustness in the face of perturbations. Additionally, a dynamical system approach to obstacle avoidance is proposed that is based on vector fields in the presence of repellers. This technique can be used to extend the motion abilities of the robot without need for changing the trained Motion Pattern Generator (MPG). Therefore, this approach can be applied in real-time on any system that generates a certain movement trajectory. Assume that the MPG system is implemented on an industrial robotic arm, similar to the ones used in a car factory. Even though the obstacle avoidance strategy presented is able to modify the generated motion of the robot’s gripper in such a way that it avoids obstacles, it does not guarantee that other parts of the robot cannot collide with a human. To prevent this, engineers have started to use advanced control algorithms that measure the amount of torque that is applied on the robot. This allows the robot to be aware of external perturbations. However, it turns out that, even with fast control loops, the adaptation to compensate for a sudden perturbation, is too slow to prevent high interaction forces. To reduce such forces, researchers started to use mechanical elements that are passively compliant (e.g., springs) and light-weight flexible materials to construct robots. Although such compliant robots are much safer and inherently energy efficient to use, their control becomes much harder. Most control approaches use model information about the robot (e.g., weight distribution and shape). However, when constructing a compliant robot it is hard to determine the dynamics of these materials. Therefore, a model-free adaptive control framework is proposed that assumes no prior knowledge about the robot. By interacting with the robot it learns an inverse robot model that is used as controller. The more it interacts, the better the control be- comes. Appropriately, this framework is called Inverse Modeling Adaptive (IMA) control framework. I have evaluated the IMA controller’s tracking ability on sev- eral tasks, investigating its model independence and stability. Furthermore, I have shown its fast learning ability and comparable performance to taskspecific designed controllers. Given both the MPG and IMA controllers, it is possible to improve the inter- actability of a compliant robot in a human-friendly environment. When the robot is to perform human-like motions for a large set of tasks, we need to demonstrate motion examples of all these tasks. However, biological research concerning the motion generation of animals and humans revealed that a limited set of motion patterns, called motion primitives, are modulated and combined to generate advanced motor/motion skills that humans and animals exhibit. Inspired by these interesting findings, I investigate if a single motion primitive indeed can be modulated to achieve a desired motion behavior. By some elementary experiments, where an MPG is controlled by an IMA controller, a proof of concept is presented. Furthermore, a general hierarchy is introduced that describes how a robot can be controlled in a biology-inspired manner. I also investigated how motion primitives can be combined to produce a desired motion. However, I was unable to get more advanced implementations to work. The results of some simple experiments are presented in the appendix. Another approach I investigated assumes that the primitives themselves are undefined. Instead, only a high-level description is given, which describes that every primitive on average should contribute equally, while still allowing for a single primitive to specialize in a part of the motion generation. Without defining the behavior of a primitive, only a set of untrained IMA controllers is used of which each will represent a single primitive. As a result of the high-level heuristic description, the task space is tiled into sub-regions in an unsupervised manner. Resulting in controllers that indeed represent a part of the motion generation. I have applied this Modular Architecture with Control Primitives (MACOP) on an inverse kinematic learning task and investigated the emerged primitives. Thanks to the tiling of the task space, it becomes possible to control redundant systems, because redundant solutions can be spread over several control primitives. Within each sub region of the task space, a specific control primitive is more accurate than in other regions allowing for the task complexity to be distributed over several less complex tasks. Finally, I extend the use of an IMA-controller, which is tracking controller, to the control of under-actuated systems. By using a sample-based planning algorithm it becomes possible to explore the system dynamics in which a path to a desired state can be planned. Afterwards, MACOP is used to incorporate feedback and to learn the necessary control commands corresponding to the planned state space trajectory, even if it contains errors. As a result, the under-actuated control of a cart pole system was achieved. Furthermore, I presented the concept of a simulation based control framework that allows the learning of the system dynamics, planning and feedback control iteratively and simultaneously

    Parameter Estimation of McKibben Pneumatic Artificial Muscle and Human Intention

    Get PDF
    McKibben型空気圧ゴム人工筋は,ゴムチューブを非伸縮性のメッシュ包んだ構造を有し,内部に圧縮空気を注入することにより収縮力を発生させる.構造的利点から,外骨格デバイスなどのアクチュエータとして利用されている.近年,物理的接触により得られた筋電位等の生体情報を制御入力へフィードバックし,所望の出力を実現する外骨格デバイスが開発されている.これらのデバイスでは,人間をシステムの一部として考えるため,効率的に制御系設計をおこなう場合,人間とデバイス両方のダイナミクスを考慮した開発環境の構築が必要となる. そこで,本論文の目的は、McKibben型空気圧ゴム人工筋駆動の外骨格デバイスを対象とした制御系設計のための仮想環境を開発・整備することである.まず,空気圧ゴム人工筋モデル内に存在する未知パラメータの効率的な推定法を提案する.提案法は粒子群最適化アルゴリズムに基づいており,その探索初期点をパラメータ空間内の良好な範囲内に指定する.3種類の人工筋に対してパラメータ推定をおこない,提案法の有効性を検証する.次に,提案法により推定されたパラメータを用い,従来の人工筋モデルを負荷変動について考慮したモデルに拡張する.更に,生体情報フィードバックによる外骨格デバイスの開発を見据え,人間の動作意思を予測する推定器を作成する.この推定器は,複数の被験者から得られた筋電位を特徴量とし,サポートベクタマシンとニューラルネットワークにより3つおよび5つの動作を判別する.電気通信大学201

    Advanced Mobile Robotics: Volume 3

    Get PDF
    Mobile robotics is a challenging field with great potential. It covers disciplines including electrical engineering, mechanical engineering, computer science, cognitive science, and social science. It is essential to the design of automated robots, in combination with artificial intelligence, vision, and sensor technologies. Mobile robots are widely used for surveillance, guidance, transportation and entertainment tasks, as well as medical applications. This Special Issue intends to concentrate on recent developments concerning mobile robots and the research surrounding them to enhance studies on the fundamental problems observed in the robots. Various multidisciplinary approaches and integrative contributions including navigation, learning and adaptation, networked system, biologically inspired robots and cognitive methods are welcome contributions to this Special Issue, both from a research and an application perspective

    Model-free tracking control of complex dynamical trajectories with machine learning

    Full text link
    Nonlinear tracking control enabling a dynamical system to track a desired trajectory is fundamental to robotics, serving a wide range of civil and defense applications. In control engineering, designing tracking control requires complete knowledge of the system model and equations. We develop a model-free, machine-learning framework to control a two-arm robotic manipulator using only partially observed states, where the controller is realized by reservoir computing. Stochastic input is exploited for training, which consists of the observed partial state vector as the first and its immediate future as the second component so that the neural machine regards the latter as the future state of the former. In the testing (deployment) phase, the immediate-future component is replaced by the desired observational vector from the reference trajectory. We demonstrate the effectiveness of the control framework using a variety of periodic and chaotic signals, and establish its robustness against measurement noise, disturbances, and uncertainties.Comment: 16 pages, 8 figure
    corecore