517 research outputs found

    A new analysis of the WASP-3 system: no evidence for an additional companion

    Full text link
    In this work we investigate the problem concerning the presence of additional bodies gravitationally bounded with the WASP-3 system. We present eight new transits of this planet and analyse all the photometric and radial velocity data published so far. We did not observe significant periodicities in the Fourier spectrum of the observed minus calculated (O-C) transit timing and radial velocity diagrams (the highest peak having false-alarm probabilities of 56 per cent and 31 per cent, respectively) or long-term trends. Combining all the available information, we conclude that the radial velocity and transit timing techniques exclude, at 99 per cent confidence limit, any perturber more massive than M \gtrsim 100 M_Earth with periods up to 10 times the period of the inner planet. We also investigate the possible presence of an exomoon on this system and determined that considering the scatter of the O-C transit timing residuals a coplanar exomoon would likely produce detectable transits. This hypothesis is however apparently ruled out by observations conducted by other researchers. In case the orbit of the moon is not coplanar the accuracy of our transit timing and transit duration measurements prevents any significant statement. Interestingly, on the basis of our reanalysis of SOPHIE data we noted that WASP-3 passed from a less active (log R'_hk=-4.95) to a more active (log R'_hk=-4.8) state during the 3 yr monitoring period spanned by the observations. Despite no clear spot crossing has been reported for this system, this analysis claims for a more intensive monitoring of the activity level of this star in order to understand its impact on photometric and radial velocity measurements.Comment: MNRAS accepted (14/08/2012

    KH 15D: A Spectroscopic Binary

    Get PDF
    We present the results of a high-resolution spectroscopic monitoring program of the eclipsing pre-main-sequence star KH 15D that reveal it to be a single-line spectroscopic binary. We find that the best-fit Keplerian model has a period P = 48.38 days, which is nearly identical to the photometric period. Thus, we find the best explanation for the periodic dimming of KH 15D is that the binary motion carries the currently visible star alternately above and below the edge of an obscuring cloud. The data are consistent with the models involving an inclined circumstellar disk, as recently proposed by Winn et al. (2004) and Chiang & Murray-Clay (2004). We show that the mass ratio expected from models of PMS evolution, together with the mass constraints for the visible star, restrict the orbital eccentricity to 0.68 < e < 0.80 and the mass function to 0.125 < Fm < 0.5 Msun.Comment: 8 pages, 4 figures, 3 tables, accepted for publication in September AJ. Discussion of rotational velocity deferred to Hamilton, et al. (2004, in prep). Previously reported vsini value in error; Replaced Table 3 with new Figure 3; Added new Table 2 showing individual radial velocities w.r.t. each reference star; Fixed typo in Figure

    TRADES: A new software to derive orbital parameters from observed transit times and radial velocities. Revisiting Kepler-11 and Kepler-9

    Full text link
    Aims. With the purpose of determining the orbital parameters of exoplanetary systems from observational data, we have developed a software, named TRADES (TRAnsits and Dynamics of Exoplanetary Systems), to simultaneously fit observed radial velocities and transit times data. Methods. We implemented a dynamical simulator for N-body systems, which also fits the available data during the orbital integration and determines the best combination of the orbital parameters using grid search, χ2\chi^2 minimization, genetic algorithms, particle swarm optimization, and bootstrap analysis. Results. To validate TRADES, we tested the code on a synthetic three-body system and on two real systems discovered by the Kepler mission: Kepler-9 and Kepler-11. These systems are good benchmarks to test multiple exoplanet systems showing transit time variations (TTVs) due to the gravitational interaction among planets. We have found that orbital parameters of Kepler-11 planets agree well with the values proposed in the discovery paper and with a a recent work from the same authors. We analyzed the first three quarters of Kepler-9 system and found parameters in partial agreement with discovery paper. Analyzing transit times (T0s) covering 12 quarters of Kepler data, that we have found a new best-fit solution. This solution outputs masses that are about 55% of the values proposed in the discovery paper; this leads to a reduced semi-amplitude of the radial velocities of about 12.80 m/s.Comment: 14 pages, 13 figures, 6 tables; accepted for publication in Astronomy & Astrophysics, and corrected by the Language Edito

    WASP-4b Arrived Early for the TESS Mission

    Get PDF
    The Transiting Exoplanet Survey Satellite (TESS) recently observed 18 transits of the hot Jupiter WASP-4b. The sequence of transits occurred 81.6 ±\pm 11.7 seconds earlier than had been predicted, based on data stretching back to 2007. This is unlikely to be the result of a clock error, because TESS observations of other hot Jupiters (WASP-6b, 18b, and 46b) are compatible with a constant period, ruling out an 81.6-second offset at the 6.4σ\sigma level. The 1.3-day orbital period of WASP-4b appears to be decreasing at a rate of P˙=12.6±1.2\dot{P} = -12.6 \pm 1.2 milliseconds per year. The apparent period change might be caused by tidal orbital decay or apsidal precession, although both interpretations have shortcomings. The gravitational influence of a third body is another possibility, though at present there is minimal evidence for such a body. Further observations are needed to confirm and understand the timing variation.Comment: AJ accepte

    HAT-P-39b--HAT-P-41b: Three Highly Inflated Transiting Hot Jupiters

    Full text link
    We report the discovery of three new transiting extrasolar planets orbiting moderately bright (V=11.1 to 12.4) F stars. The planets have periods of P = 2.6940 d to 4.4572 d, masses of 0.60 M_J to 0.80 M_J, and radii of 1.57 R_J to 1.73 R_J. They orbit stars with masses between 1.40 M_sun and 1.51 M_sun. The three planets are members of an emerging population of highly inflated Jupiters with 0.4 M_J 1.5 R_J.Comment: Submitted to AJ. 16 pages, 11 figures, 12 table

    HAT-P31bc:A Transiting, Eccentric, Hot Jupiter and a Long-Period, Massive Third Body

    Get PDF
    We report the discovery of HAT-P-31b, a transiting exoplanet orbiting the V = 11.660 dwarf star GSC 2099-00908. HAT-P-31b is the first planet discovered with the Hungarian-made Automated Telescope (HAT) without any follow-up photometry, demonstrating the feasibility of a new mode of operation for the HATNet project. The 2.17 M_J , 1.1 R_J planet has a period of P_b = 5.0054 days and maintains an unusually high eccentricity of e_b = 0.2450 ± 0.0045, determined through Keck, FIbr-fed Échelle Spectrograph, and Subaru high-precision radial velocities (RVs). Detailed modeling of the RVs indicates an additional quadratic residual trend in the data detected to very high confidence. We interpret this trend as a long-period outer companion, HAT-P-31c, of minimum mass 3.4 M_J and period ≥2.8 years. Since current RVs span less than half an orbital period, we are unable to determine the properties of HAT-P-31c to high confidence. However, dynamical simulations of two possible configurations show that orbital stability is to be expected. Further, if HAT-P-31c has non-zero eccentricity, our simulations show that the eccentricity of HAT-P-31b is actively driven by the presence of c, making HAT-P-31 a potentially intriguing dynamical laboratory

    Tidally Driven Oscillations in KIC 4544587: a δ Scuti Binary System

    Get PDF
    Binary modelling techniques and frequency analysis have been applied to the Kepler photometric observations of KIC 4544587 to determine information about the orbital characteristics, individual components and tidal interactions. The system contains an early A-type δ Scuti variable, which pulsates in both pressure and gravity modes, and a late F- to early G-type star, which is possibly a solar-like oscillator. The Wilson-Devinney code was used to model the Quarter 3.2 data and PHOEBE was used to model the Quarter 7 data; the results of these two methods were then compared. Using PHOEBE the rate of apsidal advance was determined to be 0.0001179(1) rad d-1, which gives 145.9(1) yr for a complete precession. Subsequently the binary model light curve was subtracted from the original data and frequency analysis was performed on the residuals. Fifteen frequencies were identified that are harmonics of the orbital period, 9 of which are in the g mode regime and 6 in the p mode regime. It was concluded that these frequencies are not an artifact of the model fit and thus are a signature of tidal resonance. It was also determined that many of the frequencies in the p mode regime are separated from the two dominant p modes by a multiple of the orbital frequency; six of the identified modes demonstrate this separation to an accuracy of 3 σ. As they are not orbital harmonics, the origin of these frequencies remains unknown. Currently we know of no other star demonstrating these characteristics
    corecore