2,102 research outputs found

    Automated Mixed Traffic Vehicle (AMTV) technology and safety study

    Get PDF
    Technology and safety related to the implementation of an Automated Mixed Traffic Vehicle (AMTV) system are discussed. System concepts and technology status were reviewed and areas where further development is needed are identified. Failure and hazard modes were also analyzed and methods for prevention were suggested. The results presented are intended as a guide for further efforts in AMTV system design and technology development for both near term and long term applications. The AMTV systems discussed include a low speed system, and a hybrid system consisting of low speed sections and high speed sections operating in a semi-guideway. The safety analysis identified hazards that may arise in a properly functioning AMTV system, as well as hardware failure modes. Safety related failure modes were emphasized. A risk assessment was performed in order to create a priority order and significant hazards and failure modes were summarized. Corrective measures were proposed for each hazard

    Safety considerations in the design and operation of large wind turbines

    Get PDF
    The engineering and safety techniques used to assure the reliable and safe operation of large wind turbine generators utilizing the Mod 2 Wind Turbine System Program as an example is described. The techniques involve a careful definition of the wind turbine's natural and operating environments, use of proven structural design criteria and analysis techniques, an evaluation of potential failure modes and hazards, and use of a fail safe and redundant component engineering philosophy. The role of an effective quality assurance program, tailored to specific hardware criticality, and the checkout and validation program developed to assure system integrity are described

    Critical Infrastructure Protection Metrics and Tools Papers and Presentations

    Get PDF
    Contents: Dr. Hilda Blanco: Prioritizing Assets in Critical Infrastructure Systems; Christine Poptanich: Strategic Risk Analysis; Geoffrey S. French/Jin Kim: Threat-Based Approach to Risk Case Study: Strategic Homeland Infrastructure Risk Assessment (SHIRA); William L. McGill: Techniques for Adversary Threat Probability Assessment; Michael R. Powers: The Mathematics of Terrorism Risk Stefan Pickl: SOA Approach to the IT-based Protection of CIP; Richard John: Probabilistic Project Management for a Terrorist Planning a Dirty Bomb Attack on a Major US Port; LCDR Brady Downs: Maritime Security Risk Analysis Model (MSRAM); Chel Stromgren: Terrorism Risk Assessment and Management (TRAM); Steve Lieberman: Convergence of CIP and COOP in Banking and Finance; Harry Mayer: Assessing the Healthcare and Public Health Sector with Model Based Risk Analysis; Robert Powell: How Much and On What? Defending and Deterring Strategic Attackers; Ted G. Lewis: Why Do Networks Cascade

    IEEE Access Special Section Editorial: Big Data Technology and Applications in Intelligent Transportation

    Get PDF
    During the last few years, information technology and transportation industries, along with automotive manufacturers and academia, are focusing on leveraging intelligent transportation systems (ITS) to improve services related to driver experience, connected cars, Internet data plans for vehicles, traffic infrastructure, urban transportation systems, traffic collaborative management, road traffic accidents analysis, road traffic flow prediction, public transportation service plan, personal travel route plans, and the development of an effective ecosystem for vehicles, drivers, traffic controllers, city planners, and transportation applications. Moreover, the emerging technologies of the Internet of Things (IoT) and cloud computing have provided unprecedented opportunities for the development and realization of innovative intelligent transportation systems where sensors and mobile devices can gather information and cloud computing, allowing knowledge discovery, information sharing, and supported decision making. However, the development of such data-driven ITS requires the integration, processing, and analysis of plentiful information obtained from millions of vehicles, traffic infrastructures, smartphones, and other collaborative systems like weather stations and road safety and early warning systems. The huge amount of data generated by ITS devices is only of value if utilized in data analytics for decision-making such as accident prevention and detection, controlling road risks, reducing traffic carbon emissions, and other applications which bring big data analytics into the picture

    Role of Pre-processing in Textual Data Fusion: Learn From the Croydon Tram Tragedy

    Get PDF
    Tram/train derailment subject to human mistakes makes investments in an advanced control room as well as information gathering system exaggerated. A disaster in Croydon in year 2016 is recent evidence of limitation of the acquired systems to mitigate human shortcoming in disrupted circumstances. One intriguing way of resolution could be is to fuse continuous online textual data obtained from tram travelers and apply the information for early cautioning of risk discovery. This resolution conveys our consideration regarding a resource of data fusion. The focal subject of this paper is to discuss about role of pre-processing ventures in a low-level data fusion that have been distinguished as a pass to avoid time and exertion squandering amid information retrieval. Inclines in online text data pre-processing is reviewed which comes about an outline suggestion that concede traveler's responses through social media channels. The research outcome shows by a case of data fusion could go about as an impetus to railway industry to effectively partake in data exploration and information investigation

    Real-time image and video processing for advanced services on-board vehicles for passenger transport

    Get PDF
    The paper exploits the video camera available on-board vehicles for public transport, such as trains, coaches, ferryboats, and so on, to implement advanced services for the passengers. The idea is implementing not only surveillance systems, but also passenger services such as: people counting, smoke and/or fire alarm, automatic climate control, e-ticketing. For each wagon, an embedded acquisition and processing unit is used, which is composed by a video multiplexer, and by an image/video signal processor that implements in real-time algorithms for advanced services such as: smoke detection, to give an early alarm in case of a fire, or people detection for people counting, or fatigue detection for the driver. The alarm is then transmitted to the train information system, to be displayed for passengers or the crew staff

    A review of cyber threats and defence approaches in emergency management

    Get PDF
    Emergency planners, first responders and relief workers increasingly rely on computational and communication systems that support all aspects of emergency management, from mitigation and preparedness to response and recovery. Failure of these systems, whether accidental or because of malicious action, can have severe implications for emergency management. Accidental failures have been extensively documented in the past and significant effort has been put into the development and introduction of more resilient technologies. At the same time researchers have been raising concerns about the potential of cyber attacks to cause physical disasters or to maximise the impact of one by intentionally impeding the work of the emergency services. Here, we provide a review of current research on the cyber threats to communication, sensing, information management and vehicular technologies used in emergency management. We emphasise on open issues for research, which are the cyber threats that have the potential to affect emergency management severely and for which solutions have not yet been proposed in the literature

    Contributions to the 10th International Cycling Safety Conference 2022 (ICSC2022)

    Get PDF
    This publication contains all contributions (extended abstracts) to the 10th International Cycling Safety Conference, which was held in Dresden, Germany, Nov. 08-10, 2022

    Enhancing service quality and reliability in intelligent traffic system

    Get PDF
    Intelligent Traffic Systems (ITS) can manage on-road traffic efficiently based on real-time traffic conditions, reduce delay at the intersections, and maintain the safety of the road users. However, emergency vehicles still struggle to meet their targeted response time, and an ITS is vulnerable to various types of attacks, including cyberattacks. To address these issues, in this dissertation, we introduce three techniques that enhance the service quality and reliability of an ITS. First, an innovative Emergency Vehicle Priority System (EVPS) is presented to assist an Emergency Vehicle (EV) in attending the incident place faster. Our proposed EVPS determines the proper priority codes of EV based on the type of incidents. After priority code generation, EVPS selects the number of traffic signals needed to be turned green considering the impact on other vehicles gathered in the relevant adjacent cells. Second, for improving reliability, an Intrusion Detection System for traffic signals is proposed for the first time, which leverages traffic and signal characteristics such as the flow rate, vehicle speed, and signal phase time. Shannon’s entropy is used to calculate the uncertainty associated with the likelihood of particular evidence and Dempster-Shafer (DS) decision theory is used to fuse the evidential information. Finally, to improve the reliability of a future ITS, we introduce a model that assesses the trust level of four major On-Board Units (OBU) of a self-driving car along with Global Positioning System (GPS) data and safety messages. Both subjective logic (DS theory) and CertainLogic are used to develop the theoretical underpinning for estimating the trust value of a self-driving car by fusing the trust value of four OBU components, GPS data and safety messages. For evaluation and validation purposes, a popular and widely used traffic simulation package, namely Simulation of Urban Mobility (SUMO), is used to develop the simulation platform using a real map of Melbourne CBD. The relevant historical real data taken from the VicRoads website were used to inject the traffic flow and density in the simulation model. We evaluated the performance of our proposed techniques considering different traffic and signal characteristics such as occupancy rate, flow rate, phase time, and vehicle speed under many realistic scenarios. The simulation result shows the potential efficacy of our proposed techniques for all selected scenarios.Doctor of Philosoph
    • …
    corecore