131 research outputs found

    Commercially available pressure sensors for sport and health applications: A comparative review

    Get PDF
    Pressure measurement systems have numerous applications in healthcare and sport. The purpose of this review is to: (a) describe the brief history of the development of pressure sensors for clinical and sport applications, (b) discuss the design requirements for pressure measurement systems for different applications, (c) critique the suitability, reliability, and validity of commercial pressure measurement systems, and (d) suggest future directions for the development of pressure measurements systems in this area. Commercial pressure measurement systems generally use capacitive or resistive sensors, and typically capacitive sensors have been reported to be more valid and reliable than resistive sensors for prolonged use. It is important to acknowledge, however, that the selection of sensors is contingent upon the specific application requirements. Recent improvements in sensor and wireless technology and computational power have resulted in systems that have higher sensor density and sampling frequency with improved usability – thinner, lighter platforms, some of which are wireless, and reduced the obtrusiveness of in-shoe systems due to wireless data transmission and smaller data-logger and control units. Future developments of pressure sensors should focus on the design of systems that can measure or accurately predict shear stresses in conjunction with pressure, as it is thought the combination of both contributes to the development of pressure ulcers and diabetic plantar ulcers. The focus for the development of in-shoe pressure measurement systems is to minimise any potential interference to the patient or athlete, and to reduce power consumption of the wireless systems to improve the battery life, so these systems can be used to monitor daily activity. A potential solution to reduce the obtrusiveness of in-shoe systems include thin flexible pressure sensors which can be incorporated into socks. Although some experimental systems are available further work is needed to improve their validity and reliability

    Development of the Telemetrical Intraoperative Soft Tissue Tension Monitoring System in Total Knee Replacement with MEMS and ASIC Technologies

    Get PDF
    The alignment of the femoral and tibial components of the Total Knee Arthoplasty (TKA) is one of the most important factors to implant survivorship. Hence, numerous ligament balancing techniques and devices have been developed in order to accurately balance the knee intra-operatively. Spacer block, tensioner and tram adapter are instruments that allow surgeons to qualitatively balance the flexion and extension gaps during TKA. However, even with these instruments, the surgical procedure still relies on the skill and experience of the surgeon. The objective of this thesis is to develop a computerized surgical instrument that can acquire intra-operative data telemetrically for surgeons and engineers. Microcantilever is chosen to be used as the strain sensing elements. Even though many high end off-the-shelf data acquisition components and integrated circuit (IC) chips exist on the market, yet multiple components are required to process the entire array of microcantilevers and achieve the desired functions. Due to the size limitation of the off-chip components, an Application Specific Integrated Circuit (ASIC) chip is designed and fabricated. Using a spacer block as a base, sensors, a data acquisition system as well as the transmitter and antenna are embedded into it. The electronics are sealed with medical grade epoxy

    Validation of Radiocarpal Joint Contact Models Based On Images from a Clinical MRI Scanner

    Get PDF
    Due to the severity and continuing escalation in occurrences of degenerative joint diseases, it is vital to establish a means of detection and prevention that could lead to an improvement in quality of life. One such means is MRI-based modeling for joint contact analysis of in vivo functional loading. The purpose of this study was to validate models generated from a clinical MR scanner for future in vivo joint contact analyses. Models were tested using 3 cadaver forearm specimens and compared with experimental data. It was found that models were validated based on contact area. Direct contact area measurements were observed to be very close to experimental data. Model force measurements were reasonable, but did not agree with experimental data as well as contact area. Peak pressure data from the models were less consistent in correspondence with experimental data. Also, radiocarpal mechanics were investigated to determine the effect of inserting a sensor into the joint space. Magnitudes of bone motions were found to be greater with film inserted than without film. Model results showed contact areas to be higher with film than without film

    A force-sensing device for assistance in soft-tissue balancing during knee arthroplasty

    Get PDF
    Nowadays, the large majority of the instrumentation for orthopaedic surgery consists of mechanical tools with varying degrees of complexity. To increase the accuracy and the safety of orthopaedic interventions, sensors and computers were recently introduced in the operating room. Computer Assisted Orthopaedic Surgery (CAOS) uses a navigation system that tracks the movements of surgical instruments in real-time and displays their exact location in relation to the operative area. Such technology improved the quality of orthopaedic arthroplasties, but it is still limited to the measurement of kinematic parameters such as axial alignments, position and angle measurements. In Total Knee Arthroplasty (TKA), the ligament balance, which is crucial for the stability and lifetime of implants, is currently only qualitatively assessed. The goal of this thesis was therefore to demonstrate the importance of intraoperative measurement of musculoskeletal forces through the development of a force-sensing device designed to improve the ligament balancing procedure during TKA. Three possible device designs were proposed and evaluated using finite element analysis in an iterative optimization process. The final design consists of two sensitive plates, one for each condyle, a tibial base plate and a set of spacers to adapt the device thickness to the patient-specific tibiofemoral gaps. Each sensitive plate is equipped with three deformable bridges instrumented with thick-film piezoresistive sensors, which allow accurate measurements of the amplitude and location of the tibiofemoral contact forces. The net varus-valgus moment is then computed to characterize the ligament imbalance. Laboratory experiments showed that the device has appropriate accuracy and dynamic range for the intended application. The first experimental trials on a plastic knee joint model and on a cadaver specimen demonstrated the proper in-situ functioning of the device. The performance and surgical advantages of the device were then evaluated in an in-vitro study including four different experiments: 1) Six knee joints were axially loaded. Comparing applied and measured compressive forces demonstrated the accuracy and reliability of in-situ measurements. 2) To estimate the importance of keeping the patella in its anatomical place during imbalance assessment, the effect of patellar eversion on the mediolateral distribution of tibiofemoral contact forces was measured. One fourth of the patellar load was shifted to the lateral compartment. 3) Assessment of knee stability based on condyle contact forces or varus-valgus moments were compared to the current surgical method (difference of varus-valgus loads causing condyle lift-off). The force-based assessment found to be equivalent to the surgical method while the moment-based technique, which is considered optimal, showed a tendency of lateral imbalance. 4) Finally the effect of minor and major medial collateral ligament releases was biomechanically quantified. Large variation among specimens reflected the difficulty of ligament release and the need for intraoperative force monitoring. Two clinical trials were carried out to evaluate the device performance in a surgical environment. After the tibial cut, the medial and lateral tibiofemoral gaps ensuring the knee stability were determined from the device measurements and compared to the femoral cuts performed on the basis of standard instrumentation. The agreement between the two approaches was generally good. The only significant difference was measured on the first patient at 90° flexion. At this point, the surgeon also estimated that the knee was not optimally balanced, thus demonstrating the consistency between his perception and the device measurements. In conclusion, the proposed force-sensing device for assistance in ligament balancing during TKA provides accurate, reliable and useful measurements. In addition to the precise imbalance assessment based on the measurement of forces and moments, important clinical advantages, such as the possibility to keep the patella in its anatomical place during the measurement or the real-time force monitoring during the delicate phase of ligament release, were demonstrated. The encouraging results of the in-vivo trial proved the usability of the device in a surgical environment and opens the way for larger clinical studies. The developed device has thus potential to improve the ligament balancing procedure, the consistency of surgery and the lifetime of TKA, illustrating thereby the clinical benefit of measuring forces during orthopaedic surgeries

    Commercially available pressure sensors for sport and health applications: A comparative review

    Get PDF
    Pressure measurement systems have numerous applications in healthcare and sport. The purpose of this review is to: (a) describe the brief history of the development of pressure sensors for clinical and sport applications, (b) discuss the design requirements for pressure measurement systems for different applications, (c) critique the suitability, reliability, and validity of commercial pressure measurement systems, and (d) suggest future directions for the development of pressure measurements systems in this area. Commercial pressure measurement systems generally use capacitive or resistive sensors, and typically capacitive sensors have been reported to be more valid and reliable than resistive sensors for prolonged use. It is important to acknowledge, however, that the selection of sensors is contingent upon the specific application requirements. Recent improvements in sensor and wireless technology and computational power have resulted in systems that have higher sensor density and sampling frequency with improved usability – thinner, lighter platforms, some of which are wireless, and reduced the obtrusiveness of in-shoe systems due to wireless data transmission and smaller data-logger and control units. Future developments of pressure sensors should focus on the design of systems that can measure or accurately predict shear stresses in conjunction with pressure, as it is thought the combination of both contributes to the development of pressure ulcers and diabetic plantar ulcers. The focus for the development of in-shoe pressure measurement systems is to minimise any potential interference to the patient or athlete, and to reduce power consumption of the wireless systems to improve the battery life, so these systems can be used to monitor daily activity. A potential solution to reduce the obtrusiveness of in-shoe systems include thin flexible pressure sensors which can be incorporated into socks. Although some experimental systems are available further work is needed to improve their validity and reliability

    Studies on Spinal Fusion from Computational Modelling to ‘Smart’ Implants

    Full text link
    Low back pain, the worldwide leading cause of disability, is commonly treated with lumbar interbody fusion surgery to address degeneration, instability, deformity, and trauma of the spine. Following fusion surgery, nearly 20% experience complications requiring reoperation while 1 in 3 do not experience a meaningful improvement in pain. Implant subsidence and pseudarthrosis in particular present a multifaceted challenge in the management of a patient’s painful symptoms. Given the diversity of fusion approaches, materials, and instrumentation, further inputs are required across the treatment spectrum to prevent and manage complications. This thesis comprises biomechanical studies on lumbar spinal fusion that provide new insights into spinal fusion surgery from preoperative planning to postoperative monitoring. A computational model, using the finite element method, is developed to quantify the biomechanical impact of temporal ossification on the spine, examining how the fusion mass stiffness affects loads on the implant and subsequent subsidence risk, while bony growth into the endplates affects load-distribution among the surrounding spinal structures. The computational modelling approach is extended to provide biomechanical inputs to surgical decisions regarding posterior fixation. Where a patient is not clinically pre-disposed to subsidence or pseudarthrosis, the results suggest unilateral fixation is a more economical choice than bilateral fixation to stabilise the joint. While finite element modelling can inform pre-surgical planning, effective postoperative monitoring currently remains a clinical challenge. Periodic radiological follow-up to assess bony fusion is subjective and unreliable. This thesis describes the development of a ‘smart’ interbody cage capable of taking direct measurements from the implant for monitoring fusion progression and complication risk. Biomechanical testing of the ‘smart’ implant demonstrated its ability to distinguish between graft and endplate stiffness states. The device is prepared for wireless actualisation by investigating sensor optimisation and telemetry. The results show that near-field communication is a feasible approach for wireless power and data transfer in this setting, notwithstanding further architectural optimisation required, while a combination of strain and pressure sensors will be more mechanically and clinically informative. Further work in computational modelling of the spine and ‘smart’ implants will enable personalised healthcare for low back pain, and the results presented in this thesis are a step in this direction

    Is in-vivo sensing in a total hip replacement a possibility? A review on past systems and future challenges.

    Get PDF
    Surgery to implant a total hip replacement (THR) is very successful in reducing pain and restoring function. This procedure has become more prevalent, and projections estimate further increases in demand. However, complications can arise, and current diagnostic techniques often fail to expose underlying issues before they result in a catastrophic failure that requires revision surgery. An instrumented implant, with embedded sensors capable of real time condition monitoring, would be an attractive proposition to incorporate within a THR. Continued advances in the performance and miniaturisation of electronic components, embedded systems, sensing and wireless communications have given the tools and resources medical device manufacturers need to innovate in the field of implantable medical devices. Smart implants are already being widely used in healthcare including pacemakers, cochlear implants, glucose monitors and insulin pumps however, a widely used smart THR has not yet been realised. Since the implantation of the first instrumented hip implant in the 1960s there have been several in-vitro studies monitoring levels of implant loosening. Additionally, significant research has been conducted using instrumented THRs to perform in-vivo measurement of biomechanical metrics, including force and moments. To date less than 100 patients have successfully received an instrumented implant. The results of these studies have aided researchers, designers and surgeons in wider research projects, however, the motivation behind the work was to provide discrete biomechanical data sets and not provide real-time condition monitoring of an implants performance or highlight early indications for revision surgery. If in-vivo sensing within a THR is to be achieved and adopted in regular clinical practice then the following challenges need to be addressed: choice of the sensing method, biocompatibility and integration within the implant, power supply, communication, and regulatory considerations

    Total knee replacements: design and pre-clinical testing methods

    Get PDF
    Total knee replacement (TKR) is a common and successful treatment for severe osteoarthritis of the knee. However, a large minority of people remain dissatisfied after the operation, despite adequate pain relief. Over 50 designs of TKR are used in the UK each year, but differentiating between these devices in terms of patient function and making the right choice for each patient remains challenging. The aim of this research was to characterise designs of TKR in the laboratory, using pre-clinical testing methods, in order to better understand TKR function, and make suggestions for improved implant design and testing. Conventional, medial-pivot, guided-motion and bicruciate retaining (BCR) TKRs were tested. Standard ASTM test methods used for CE-marking purposes were demonstrated to differentiate between devices, but did not produce enough information to adequately understand how a new device will behave clinically, or what the potential benefits of a new device would be to patients. Guided-motion devices are meant to replicate normal knee motion, but there has been concern that they might cause too much rotation of the knee, leading to anterolateral knee pain. Results from cadaveric testing suggest that they do not adequately mimic normal knee motion and small design changes may have little impact on performance. A BCR TKR, designed to improve stability in the replaced knee joint, was also tested. Knee kinematics were measured for three design phases and surgical feasibility was also assessed for this more complicated procedure. BCR TKR was shown to lead to more normal levels of anteroposterior tibiofemoral laxity, compared to a conventional, anterior-cruciate-ligament-sacrificing TKR. Inherent variability between people’s anatomy and osteoarthritis pathology suggests there will never be a single, perfect, TKR, but more comprehensive pre-clinical testing could improve the regulatory approval process and inform better device selection, leading to improved patient outcomes.Open Acces

    Wearables for Movement Analysis in Healthcare

    Get PDF
    Quantitative movement analysis is widely used in clinical practice and research to investigate movement disorders objectively and in a complete way. Conventionally, body segment kinematic and kinetic parameters are measured in gait laboratories using marker-based optoelectronic systems, force plates, and electromyographic systems. Although movement analyses are considered accurate, the availability of specific laboratories, high costs, and dependency on trained users sometimes limit its use in clinical practice. A variety of compact wearable sensors are available today and have allowed researchers and clinicians to pursue applications in which individuals are monitored in their homes and in community settings within different fields of study, such movement analysis. Wearable sensors may thus contribute to the implementation of quantitative movement analyses even during out-patient use to reduce evaluation times and to provide objective, quantifiable data on the patients’ capabilities, unobtrusively and continuously, for clinical purposes
    • …
    corecore