1,714 research outputs found

    An EV Charging Management System Concerning Drivers' Trip Duration and Mobility Uncertainty

    Get PDF
    With continually increased attention on Electric Vehicles (EVs) due to environment impact, public Charging Stations (CSs) for EVs will become common. However, due to the limited electricity of battery, EV drivers may experience discomfort for long charging waiting time during their journeys. This often happens when a large number of (on-the-move) EVs are planning to charge at the same CS, but it has been heavily overloaded. With this concern, in an EV charging management system, we focus on CS-selection decision making and propose a scheme to manage EVs' charging plans, to minimize drivers' trip duration through intermediate charging at CSs. The proposed scheme jointly considers EVs' anticipated charging reservations (including arrival time, expected charging time) and parking duration at CSs. Furthermore, by tackling mobility uncertainty that EVs may not reach their planned CSs on time (due to traffic jams on the road), a periodical reservation updating mechanism is designed to adjust their charging plans. Results under the Helsinki city scenario with realistic EV and CS characteristics show the advantage of our proposal, in terms of minimized drivers' trip duration, as well as charging performance at the EV and CS sides

    An EV Charging Management System Concerning Drivers’ Trip Duration and Mobility Uncertainty

    Get PDF
    With continually increased attention on electric vehicles (EVs) due to environment impact, public charging stations (CSs) for EVs will become common. However, due to the limited electricity of battery, EV drivers may experience discomfort for long charging waiting time during their journeys. This often happens when a large number of (on-the-move) EVs are planning to charge at the same CS, but it has been heavily overloaded. With this concern, in an EV charging management system, we focus on CS-selection decision making and propose a scheme to manage EVs' charging plans, to minimize drivers' trip duration through intermediate charging at CSs. The proposed scheme jointly considers EVs' anticipated charging reservations (including arrival time and expected charging time) and parking duration at CSs. Furthermore, by tackling mobility uncertainty that EVs may not reach their planned CSs on time (due to traffic jams on the road), a periodical reservation updating mechanism is designed to adjust their charging plans. Results under the Helsinki city scenario with realistic EV and CS characteristics show the advantage of our proposal, in terms of minimized drivers' trip duration, as well as charging performance at the EV and CS sides

    Applying DTN Routing for Reservation-Driven EV Charging Management in Smart Cities

    Get PDF
    Charging management for Electric Vehicles (EVs) on-the-move (moving on the road with certain trip destinations) is becoming important, concerning the increasing popularity of EVs in urban city. However, the limited battery volume of EV certainly influences its driver’s experience. This is mainly because the EV needed for intermediate charging during trip, may experience a long service waiting time at Charging Station (CS). In this paper, we focus on CS-selection decision making to manage EVs’ charging plans, aiming to minimize drivers’ trip duration through intermediate charging at CSs. The anticipated EVs’ charging reservations including their arrival time and expected charging time at CSs, are brought for charging management, in addition to taking the local status of CSs into account. Compared to applying traditionally applying cellular network communication to report EVs’ charging reservations,we alternatively study the feasibility of applying Vehicle-to-Vehicle (V2V) communication with Delay/Disruption Tolerant Networking (DTN) nature, due primarily to its flexibility and cost-efficiency in Vehicular Ad hoc NETworks (VANETs). Evaluation results under the realistic Helsinki city scenario show that applying the V2V for reservation reporting is promisingly cost-efficient in terms of communication overhead for reservation making, while achieving a comparable performance in terms of charging waiting time and total trip duration

    A Cost-Efficient Communication Framework For Battery Switch Based Electric Vehicle Charging

    Get PDF
    Charging management for Electric Vehicles (EVs) on-the-move has become an increasingly important research problem in smart cities. Major technical challenges include the selection of Charging Stations (CSs) to guide charging plans, and the design of cost-efficient communication infrastructure between the power grid and EVs. In this article, we first present a brief review on state-of-the-art EV charging management schemes. Next, by incorporating battery switch technology to enable fast charging service, a Publish/Subscribe (P/S) communication framework is provisioned to support the EV charging service. Upon that, we develop a fully distributed charging management scheme with the consideration of urban travel uncertainties, e.g., traffic congestions and drivers’ preferences. This would benefit from low privacy sensitivity, as EVs’ status information will not be released through management. Results demonstrate a guidance for the provisioning of P/S communication framework to improve EV drivers’ experience, e.g., charging waiting time and total trip duration. Also, the benefit of P/S communication framework is reflected in terms of the communication efficiency. Open research issues of this emerging area are also presented

    Efficient operation of recharging infrastructure for the accommodation of electric vehicles: a demand driven approach

    Get PDF
    Large deployment and adoption of electric vehicles in the forthcoming years can have significant environmental impact, like mitigation of climate change and reduction of traffic-induced air pollutants. At the same time, it can strain power network operations, demanding effective load management strategies to deal with induced charging demand. One of the biggest challenges is the complexity that electric vehicle (EV) recharging adds to the power system and the inability of the existing grid to cope with the extra burden. Charging coordination should provide individual EV drivers with their requested energy amount and at the same time, it should optimise the allocation of charging events in order to avoid disruptions at the electricity distribution level. This problem could be solved with the introduction of an intermediate agent, known as the aggregator or the charging service provider (CSP). Considering out-of-home charging infrastructure, an additional role for the CSP would be to maximise revenue for parking operators. This thesis contributes to the wider literature of electro-mobility and its effects on power networks with the introduction of a choice-based revenue management method. This approach explicitly treats charging demand since it allows the integration of a decentralised control method with a discrete choice model that captures the preferences of EV drivers. The sensitivities to the joint charging/parking attributes that characterise the demand side have been estimated with EV-PLACE, an online administered stated preference survey. The choice-modelling framework assesses simultaneously out-of-home charging behaviour with scheduling and parking decisions. Also, survey participants are presented with objective probabilities for fluctuations in future prices so that their response to dynamic pricing is investigated. Empirical estimates provide insights into the value that individuals place to the various attributes of the services that are offered by the CSP. The optimisation of operations for recharging infrastructure is evaluated with SOCSim, a micro-simulation framework that is based on activity patterns of London residents. Sensitivity analyses are performed to examine the structural properties of the model and its benefits compared to an uncontrolled scenario are highlighted. The application proposed in this research is practice-ready and recommendations are given to CSPs for its full-scale implementation.Open Acces

    Human versus automated agents: how user preferences affect future mobility systems

    Get PDF
    Along with rapid advancements in digital, and physical technologies, shared autonomous electric vehicles are forecasted to gradually complement and replace traditional human-based mobility systems. Information systems play a key role in such a deep socio-technical system to pave the path toward a more sustainable future. This study investigates a hybrid ride-hailing platform of automated and human-driven vehicles. Our focus lies on the demand side where we evaluate the influence of user behaviors on economic and environmental system performance. For this, we employ a data-driven agent-based simulation modeling heterogeneous vehicle and user agents calibrated by rental data of a leading vehicle-sharing company. Our findings declare that diverse customer responses to the introduction of shared autonomous electric vehicles yield significantly different fleet performance and ecological costs. We also observe that the status quo customer communication design of ride-hailing platforms need adjustments to maximize the potentials of future hybrid shared mobility systems

    Electric Vehicle Charging Recommendation and Enabling ICT Technologies: Recent Advances and Future Directions

    Get PDF
    The introduction of Electric Vehicles (EV) will have a significant impact on the sustainable economic development of urban city. However, compared with traditional gasoline-powered vehicles, EVs currently have limited range, which necessitates regular recharging. Considering the limited charging infrastructure currently available in most countries, infrastructure investments and Renewable Energy Sources (RES) are critical. Thus, service quality provisioning is necessary for realizing EV market. Unlike numerous previous works which investigate "charging scheduling" (referred to when/whether to charge) for EVs already been parked at home/Charging Stations (CSs), a few works focus on “charging recommendation” (refer to where/which CS to charge) for on-the-move EVs. The latter use case cannot be overlooked as it is the most important feature of EVs, especially for driving experience during journeys. On-the-move EVs will travel towards appropriate CSs for charging based on smart decision on where to charge, so as to experience a shorter waiting time for charging. The effort towards sustainable engagement of EVs has not attracted enough attention from both industrial and academia communities. Even if there have been many charging service providers available, the utilization of charging infrastructures is still in need of significant enhancement. Such a situation certainly requires the popularity of EVs towards the sustainable, green and economic market. Enabling the sustainability requires a joint contribution from each domain, e.g., how to guarantee accurate information involved in decision making, how to optimally guide EV drivers towards charging place with the least waiting time, how to schedule charging services for EVs being parked within grid capacity. Achieving this goal is of importance towards a positioning of efficient, scalable and smart ICT framework, makes it feasible to learn the whole picture of grid: - Necessary information needs to be disseminated between stakeholders CSs and EVs, e.g., expected queuing time at individual CSs. In this context, how accurate CSs condition information plays an important role on the optimality of charging recommendation. - Also, it is very time-consuming for the centralized Global Controller (GC) to achieve optimization, by seamlessly collecting data from all EVs and CSs, The complexity and computation load of this centralized solution, increases exponentially with the number of EVs. This paper summaries the recent interdisciplinary research works on EV charging recommendation along with novel ICT frameworks, with an original taxonomy on how Intelligent Transportation Systems (ITS) technologies support the EV charging use case. Future directions are also highlighted to promote the future research

    A traffic-aware electric vehicle charging management system for smart cities

    Get PDF
    © . This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/The expected increase in the number of electric vehicles (EVs) in the coming years will contribute to reducing CO2 pollution in our cities. Currently, EVs' users may suffer from distress due to long charging service times and overloaded charging stations (CSs). Critical traffic conditions (e.g., traffic jams) affect EVs' trip time (TT) towards CSs and thus influence the total trip duration. With this concern, Intelligent transport systems (ITS) and more specifically connected vehicle technologies, can leverage an efficient real-time EV charging service by jointly considering CSs status and traffic conditions in the city. In this work, we propose a scheme to manage EVs' charging planning, focusing on the selection of a CS for the energy-requiring EV. The proposed scheme considers anticipated charging slots reservations performed through a vehicular ad hoc network (VANET), which has been regarded as a cost-efficient communication framework. In specific, we consider two aspects: 1) the EV's total trip time towards its destination considering an intermediate charging at each candidate CS, and 2) the communication delay of the VANET routing protocol. First, in order to estimate the EV's total trip time, our CS selection scheme takes into account the average road speed, traffic lights, and route distance, along the path of the EV. The optimal CS that produces the minimum total charging service time (including the TT) is suggested to that energy-requiring EV. Then, we introduce two communication modes based on geographical routing protocols for VANETs to attain an anticipated charging slot reservation. Simulation results show that with our charging scheme EVs' charging service time is reduced and more EVs are successfully charged.Peer ReviewedPostprint (author's final draft
    • …
    corecore