9 research outputs found

    Semiblind iterative data detection for OFDM systems with CFO and doubly selective channels

    Get PDF
    Data detection for OFDM systems over unknown doubly selective channels (DSCs) and carrier frequency offset (CFO) is investigated. A semiblind iterative detection algorithm is developed based on the expectation-maximization (EM) algorithm. It iteratively estimates the CFO, channel and recovers the unknown data using only limited number of pilot subcarriers in one OFDM symbol. In addition, efficient initial CFO and channel estimates are also derived based on approximated maximum likelihood (ML) and minimum mean square error (MMSE) criteria respectively. Simulation results show that the proposed data detection algorithm converges in a few iterations and moreover, its performance is close to the ideal case with perfect CFO and channel state information. © 2010 IEEE.published_or_final_versio

    Timing and Carrier Synchronization in Wireless Communication Systems: A Survey and Classification of Research in the Last 5 Years

    Get PDF
    Timing and carrier synchronization is a fundamental requirement for any wireless communication system to work properly. Timing synchronization is the process by which a receiver node determines the correct instants of time at which to sample the incoming signal. Carrier synchronization is the process by which a receiver adapts the frequency and phase of its local carrier oscillator with those of the received signal. In this paper, we survey the literature over the last 5 years (2010–2014) and present a comprehensive literature review and classification of the recent research progress in achieving timing and carrier synchronization in single-input single-output (SISO), multiple-input multiple-output (MIMO), cooperative relaying, and multiuser/multicell interference networks. Considering both single-carrier and multi-carrier communication systems, we survey and categorize the timing and carrier synchronization techniques proposed for the different communication systems focusing on the system model assumptions for synchronization, the synchronization challenges, and the state-of-the-art synchronization solutions and their limitations. Finally, we envision some future research directions

    Joint CFO Estimation and Data Detection in OFDM systems

    Get PDF
    Orthogonal frequency division multiplexing (OFDM) is a multicarrier modulation technique that is widely used in wireless broadband communication systems. The spectral e ciency of OFDM is very high since the subcarriers are spaced as closely as possible while maintaining orthogonality. However, one of the major problems with OFDM that can cause performance degradation is carrier frequency o set (CFO) which impairs the orthogonality among OFDM subcarriers, as a consequence, results in inter-subcarrier interference. In this thesis, an iterative algorithm for joint CFO estimation and data detection in OFDM systems over frequency selective channels is proposed. The proposed algorithm is performing both CFO estimation and data detection in the frequency domain based on the Expectation-Maximization (EM) algorithm. The proposed algorithm can achieve the same bit-error-rate (BER) performance as that of its time-domain counterpart with much lower complexity. Simulation results show that the proposed algorithm can converge after three iterations and an estimate of CFO can be obtained with high accuracy

    An EM-based semiblind joint channel and frequency offset estimator for OFDM systems over frequency-selective fading channels

    No full text
    10.1109/TVT.2008.917240IEEE Transactions on Vehicular Technology5753275-3282ITVT
    corecore