1,288 research outputs found

    Solving Inverse Problems with Piecewise Linear Estimators: From Gaussian Mixture Models to Structured Sparsity

    Full text link
    A general framework for solving image inverse problems is introduced in this paper. The approach is based on Gaussian mixture models, estimated via a computationally efficient MAP-EM algorithm. A dual mathematical interpretation of the proposed framework with structured sparse estimation is described, which shows that the resulting piecewise linear estimate stabilizes the estimation when compared to traditional sparse inverse problem techniques. This interpretation also suggests an effective dictionary motivated initialization for the MAP-EM algorithm. We demonstrate that in a number of image inverse problems, including inpainting, zooming, and deblurring, the same algorithm produces either equal, often significantly better, or very small margin worse results than the best published ones, at a lower computational cost.Comment: 30 page

    Entropy of Overcomplete Kernel Dictionaries

    Full text link
    In signal analysis and synthesis, linear approximation theory considers a linear decomposition of any given signal in a set of atoms, collected into a so-called dictionary. Relevant sparse representations are obtained by relaxing the orthogonality condition of the atoms, yielding overcomplete dictionaries with an extended number of atoms. More generally than the linear decomposition, overcomplete kernel dictionaries provide an elegant nonlinear extension by defining the atoms through a mapping kernel function (e.g., the gaussian kernel). Models based on such kernel dictionaries are used in neural networks, gaussian processes and online learning with kernels. The quality of an overcomplete dictionary is evaluated with a diversity measure the distance, the approximation, the coherence and the Babel measures. In this paper, we develop a framework to examine overcomplete kernel dictionaries with the entropy from information theory. Indeed, a higher value of the entropy is associated to a further uniform spread of the atoms over the space. For each of the aforementioned diversity measures, we derive lower bounds on the entropy. Several definitions of the entropy are examined, with an extensive analysis in both the input space and the mapped feature space.Comment: 10 page

    Learning Sparsely Used Overcomplete Dictionaries via Alternating Minimization

    Full text link
    We consider the problem of sparse coding, where each sample consists of a sparse linear combination of a set of dictionary atoms, and the task is to learn both the dictionary elements and the mixing coefficients. Alternating minimization is a popular heuristic for sparse coding, where the dictionary and the coefficients are estimated in alternate steps, keeping the other fixed. Typically, the coefficients are estimated via â„“1\ell_1 minimization, keeping the dictionary fixed, and the dictionary is estimated through least squares, keeping the coefficients fixed. In this paper, we establish local linear convergence for this variant of alternating minimization and establish that the basin of attraction for the global optimum (corresponding to the true dictionary and the coefficients) is \order{1/s^2}, where ss is the sparsity level in each sample and the dictionary satisfies RIP. Combined with the recent results of approximate dictionary estimation, this yields provable guarantees for exact recovery of both the dictionary elements and the coefficients, when the dictionary elements are incoherent.Comment: Local linear convergence now holds under RIP and also more general restricted eigenvalue condition
    • …
    corecore