1,107 research outputs found

    Cotton fabric-based flexible electrode for electrocardiography

    Get PDF
    Early detection of heart abnormalities is one of the proposed methods to reduce number of death due to cardiovascular disease. Electrocardiography (ECG) is one of the commonly used methods in healthcare institution to monitor the heart condition. However, conventional ECG monitoring system is not suitable for longterm monitoring since it is bulky and experienced personnel is needed to interpret the ECG signal. In this study, flexible electrode and circuit using cotton fabric as the substrate material is proposed. Graphene-PEDOT:PSS ink which was synthesized via electrochemical exfoliation of graphite rod was used as the conductive material. The flexible electrode was fabricated using manual immersion of scoured fabric in the ink while wax patterning and pipetting methods were employed for fabrication of electrically conductive pattern for flexible circuit. Sheet resistance of the cotton fabric-based electrode coated with 5 layers of conductive ink is 75.9 Ω/sq. The ECG signal recorded using the cotton fabric-based electrode has similar features to that of using commercial silver/silver chloride electrode. On the other hand, the average resistance of as-fabricated 10 mm long and 1 mm wide conductive pattern is 128.68 Ω. The conductive pattern remained 42.1%, 41.1% and 53.6% of its conductance after 1000 bending cycles at bend radii of 0.50, 0.75 and 1.25 mm, respectively. Besides, the conductive pattern remained 70.4% and 50.8% of its conductance after 10 acute and obtuse folding cycles, respectively. A simple cotton fabric-based operational amplifier with gain of 1.67 was fabricated as an initial proof-of-concept for development of simple processing system on cotton fabric substrate

    The status of textile-based dry EEG electrodes

    Get PDF
    Electroencephalogram (EEG) is the biopotential recording of electrical signals generated by brain activity. It is useful for monitoring sleep quality and alertness, clinical applications, diagnosis, and treatment of patients with epilepsy, disease of Parkinson and other neurological disorders, as well as continuous monitoring of tiredness/ alertness in the field. We provide a review of textile-based EEG. Most of the developed textile-based EEGs remain on shelves only as published research results due to a limitation of flexibility, stickability, and washability, although the respective authors of the works reported that signals were obtained comparable to standard EEG. In addition, nearly all published works were not quantitatively compared and contrasted with conventional wet electrodes to prove feasibility for the actual application. This scenario would probably continue to give a publication credit, but does not add to the growth of the specific field, unless otherwise new integration approaches and new conductive polymer composites are evolved to make the application of textile-based EEG happen for bio-potential monitoring

    Smart nanotextiles: materials and their application

    Get PDF
    Textiles are ubiquitous to us, enveloping our skin and surroundings. Not only do they provide a protective shield or act as a comforting cocoon but they also serve esthetic appeal and cultural importance. Recent technologies have allowed the traditional functionality of textiles to be extended. Advances in materials science have added intelligence to textiles and created ‘smart’ clothes. Smart textiles can sense and react to environmental conditions or stimuli, e.g., from mechanical, thermal, chemical, electrical, or magnetic sources (Lam Po Tang and Stylios 2006). Such textiles find uses in many applications ranging from military and security to personalized healthcare, hygiene, and entertainment. Smart textiles may be termed ‘‘passive’’ or ‘‘active.’’ A passive smart textile monitors the wearer’s physiology or the environment, e.g., a shirt with in-built thermistors to log body temperature over time. If actuators are integrated, the textile becomes an active, smart textile as it may respond to a particular stimulus, e.g., the temperature-aware shirt may automatically roll up the sleeves when body temperature rises. The fundamental components in any smart textile are sensors and actuators. Interconnections, power supply, and a control unit are also needed to complete the system. All these components must be integrated into textiles while still retaining the usual tactile, flexible, and comfortable properties that we expect from a textile. Adding new functionalities to textiles while still maintaining the look and feel of the fabric is where nanotechnology has a huge impact on the textile industry. This article describes current developments in materials for smart nanotextiles and some of the many applications where these innovative textiles are of great benefit

    Wearable smart textiles for long-term electrocardiography monitoring : a review

    Get PDF
    The continuous and long-term measurement and monitoring of physiological signals such as electrocardiography (ECG) are very important for the early detection and treatment of heart disorders at an early stage prior to a serious condition occurring. The increasing demand for the continuous monitoring of the ECG signal needs the rapid development of wearable electronic technology. During wearable ECG monitoring, the electrodes are the main components that affect the signal quality and comfort of the user. This review assesses the application of textile electrodes for ECG monitoring from the fundamentals to the latest developments and prospects for their future fate. The fabrication techniques of textile electrodes and their performance in terms of skin–electrode contact impedance, motion artifacts and signal quality are also reviewed and discussed. Textile electrodes can be fabricated by integrating thin metal fiber during the manufacturing stage of textile products or by coating textiles with conductive materials like metal inks, carbon mate-rials, or conductive polymers. The review also discusses how textile electrodes for ECG function via direct skin contact or via a non-contact capacitive coupling. Finally, the current intensive and promising research towards finding textile-based ECG electrodes with better comfort and signal quality in the fields of textile, material, medical and electrical engineering are presented as a perspective

    Health monitoring using textile sensors and electrodes: an overview and integration of technologies

    Get PDF
    Publicado em "MeMeA 2014 International Symposium on Medical Measurements and Applications : proceedings", ISBN 978-1-4799-2920-7This paper gives an overview of technologies and results of integration and test of textile integrated sensors and electrodes for monitoring of biosignals (electrocardiographic - ECG and electromyographic - EMG), breathing and moisture. Using a seamless jacquard knitting machine, it is possible to integrate these sensors and electrodes directly into the fabrics, which can then be used in clothing for monitoring of elderly people, in sports or in hazardous occupations. The total integration of the sensing elements and connections into the garment presents great advantages in physical as well as psychological comfort of the user. It has been shown that the measurements are of adequate quality for most of the applications. In some cases, as is the case of ECG and EMG, signals acquired are similar to those obtained using conventional electrodes.The authors wish to thank funding by FCT -Fundação para a Ciência e a Tecnologia, projects PEst-C/CTM/UI0264/2011, PTDC/DTP-DES/1661/2012 and project PROTACTICAL - Co-Promoção Nº Projecto: 23267, sponsored by AD

    Research progress of fabric electrodes in wearable electronic clothing

    Get PDF
    Aiming at the application requirements of fabric electrodes in wearable electronic clothing, the current materials and structure types of fabric electrodes are introduced respectively, the influence of fabric electrodes materials and structure parameters on the stability of ECG signal acquisition is analyzed, the use principle of fabric electrodes and the relationship between signal acquisition stability and comfort are summarized, and the application prospects and development direction of fabric electrodes in wearable electronic clothing are prospected in the future

    Hybrid Nanostructured Textile Bioelectrode for Unobtrusive Health Monitoring

    Get PDF
    Coronary heart disease, cardiovascular diseases and strokes are the leading causes of mortality in United States of America. Timely point-of-care health diagnostics and therapeutics for person suffering from these diseases can save thousands of lives. However, lack of accessible minimally intrusive health monitoring systems makes timely diagnosis difficult and sometimes impossible. To remedy this problem, a textile based nano-bio-sensor was developed and evaluated in this research. The sensor was made of novel array of vertically standing nanostructures that are conductive nano-fibers projecting from a conductive fabric. These sensor electrodes were tested for the quality of electrical contact that they made with the skin based on the fundamental skin impedance model and electromagnetic theory. The hybrid nanostructured dry electrodes provided large surface area and better contact with skin that improved electrode sensitivity and reduced the effect of changing skin properties, which are the problems usually faced by conventional dry textile electrodes. The dry electrodes can only register strong physiological signals because of high background noise levels, thus limiting the use of existing dry electrodes to heart rate measurement and respiration. Therefore, dry electrode systems cannot be used for recording complete ECG waveform, EEG or measurement of bioimpedance. Because of their improved sensitivity these hybrid nanostructured dry electrodes can be applied to measurement of ECG and bioimpedance with very low baseline noise. These textile based electrodes can be seamlessly integrated into garments of daily use such as vests and bra. In combination with embedded wireless network device that can communicate with smart phone, laptop or GPRS, they can function as wearable wireless health diagnostic systems

    Study of vital sign monitoring with textile sensors in swimming pool environment

    Get PDF
    This paper presents the results of a series of experiments aiming at the optimisation of vital sign monitoring using textile electrodes to be used in a swimsuit. The swimsuit will integrate sensors for the measurement of several physiological and biomechanical signals; this paper will focus on ECG and respiratory movement analysis. The data obtained is mainly intended to provide tools for evaluation of high-performance swimmers, although applications can be derived for leisure sports and other situations. A comparison between electrodes based on different materials and structures, behaviour in dry and wet environments, as well as the behavior in different extension states, will be presented. The influence of movement on the signal quality, both by the muscular electrical signals as well as by the displacement of the electrodes, will be discussed. The final objective is the integration of the electrodes in the swimsuit by knitting them directly in the suit’s fabric in a seamless knitting machineFundação para a Ciência e a Tecnologia (FCT) - PTDC/EEAELC/70803/200

    Detecting Specific Health-Related Events Using an Integrated Sensor System for Vital Sign Monitoring

    Get PDF
    In this paper, a new method for the detection of apnea/hypopnea periods in physiological data is presented. The method is based on the intelligent combination of an integrated sensor system for long-time cardiorespiratory signal monitoring and dedicated signal-processing packages. Integrated sensors are a PVDF film and conductive fabric sheets. The signal processing package includes dedicated respiratory cycle (RC) and QRS complex detection algorithms and a new method using the respiratory cycle variability (RCV) for detecting apnea/hypopnea periods in physiological data. Results show that our method is suitable for online analysis of long time series data
    corecore