72,359 research outputs found

    Detecting and Modelling Stress Levels in E-Learning Environment Users

    Get PDF
    A modern Intelligent Tutoring System (ITS) should be sentient of a learner's cognitive and affective states, as a learner’s performance could be affected by motivational and emotional factors. It is important to design a method that supports low-cost, task-independent and unobtrusive sensing of a learner’s cognitive and affective states, to improve a learner's experience in e-learning, as well as to enable personalized learning. Although tremendous related affective computing research were done in this area, there is a lack of empirical research that can automatically measure a learner's stress using objective methods. This research is set to examine how an objective stress measurement model can be developed, to compute a learner’s cognitive and emotional stress automatically using mouse and keystroke dynamics. To ensure the measurement is not affected even if the user switches between tasks, three preliminary research experiments were carried out based on three common tasks during e-learning − search, assessment and typing. A stress measurement model was then built using the datasets collected from the experiments. Three stress classifiers were tested, namely certainty factors, feedforward back-propagation neural network and adaptive neuro-fuzzy inference system. The best classifier was then integrated into the ITS stress inference engine, which is designed to decide necessary adaptation, and to provide analytical information of learners' performances, which include stress levels and learners’ behaviours when answering questions

    A model for providing emotion awareness and feedback using fuzzy logic in online learning

    Get PDF
    Monitoring users’ emotive states and using that information for providing feedback and scaffolding is crucial. In the learning context, emotions can be used to increase students’ attention as well as to improve memory and reasoning. In this context, tutors should be prepared to create affective learning situations and encourage collaborative knowledge construction as well as identify those students’ feelings which hinder learning process. In this paper, we propose a novel approach to label affective behavior in educational discourse based on fuzzy logic, which enables a human or virtual tutor to capture students’ emotions, make students aware of their own emotions, assess these emotions and provide appropriate affective feedback. To that end, we propose a fuzzy classifier that provides a priori qualitative assessment and fuzzy qualifiers bound to the amounts such as few, regular and many assigned by an affective dictionary to every word. The advantage of the statistical approach is to reduce the classical pollution problem of training and analyzing the scenario using the same dataset. Our approach has been tested in a real online learning environment and proved to have a very positive influence on students’ learning performance.Peer ReviewedPostprint (author's final draft

    The development of a rich multimedia training environment for crisis management: using emotional affect to enhance learning

    Get PDF
    PANDORA is an EU FP7-funded project developing a novel training and learning environment for Gold Commanders, individuals who carry executive responsibility for the services and facilities identified as strategically critical e.g. Police, Fire, in crisis management strategic planning situations. A key part of the work for this project is considering the emotional and behavioural state of the trainees, and the creation of more realistic, and thereby stressful, representations of multimedia information to impact on the decision-making of those trainees. Existing training models are predominantly paper-based, table-top exercises, which require an exercise of imagination on the part of the trainees to consider not only the various aspects of a crisis situation but also the impacts of interventions, and remediating actions in the event of the failure of an intervention. However, existing computing models and tools are focused on supporting tactical and operational activities in crisis management, not strategic. Therefore, the PANDORA system will provide a rich multimedia information environment, to provide trainees with the detailed information they require to develop strategic plans to deal with a crisis scenario, and will then provide information on the impacts of the implementation of those plans and provide the opportunity for the trainees to revise and remediate those plans. Since this activity is invariably multi-agency, the training environment must support group-based strategic planning activities and trainees will occupy specific roles within the crisis scenario. The system will also provide a range of non-playing characters (NPC) representing domain experts, high-level controllers (e.g. politicians, ministers), low-level controllers (tactical and operational commanders), and missing trainee roles, to ensure a fully populated scenario can be realised in each instantiation. Within the environment, the emotional and behavioural state of the trainees will be monitored, and interventions, in the form of environmental information controls and mechanisms impacting on the stress levels and decisionmaking capabilities of the trainees, will be used to personalise the training environment. This approach enables a richer and more realistic representation of the crisis scenario to be enacted, leading to better strategic plans and providing trainees with structured feedback on their performance under stress

    Affective games:a multimodal classification system

    Get PDF
    Affective gaming is a relatively new field of research that exploits human emotions to influence gameplay for an enhanced player experience. Changes in player’s psychology reflect on their behaviour and physiology, hence recognition of such variation is a core element in affective games. Complementary sources of affect offer more reliable recognition, especially in contexts where one modality is partial or unavailable. As a multimodal recognition system, affect-aware games are subject to the practical difficulties met by traditional trained classifiers. In addition, inherited game-related challenges in terms of data collection and performance arise while attempting to sustain an acceptable level of immersion. Most existing scenarios employ sensors that offer limited freedom of movement resulting in less realistic experiences. Recent advances now offer technology that allows players to communicate more freely and naturally with the game, and furthermore, control it without the use of input devices. However, the affective game industry is still in its infancy and definitely needs to catch up with the current life-like level of adaptation provided by graphics and animation

    Embodied Robot Models for Interdisciplinary Emotion Research

    Get PDF
    Due to their complex nature, emotions cannot be properly understood from the perspective of a single discipline. In this paper, I discuss how the use of robots as models is beneficial for interdisciplinary emotion research. Addressing this issue through the lens of my own research, I focus on a critical analysis of embodied robots models of different aspects of emotion, relate them to theories in psychology and neuroscience, and provide representative examples. I discuss concrete ways in which embodied robot models can be used to carry out interdisciplinary emotion research, assessing their contributions: as hypothetical models, and as operational models of specific emotional phenomena, of general emotion principles, and of specific emotion ``dimensions''. I conclude by discussing the advantages of using embodied robot models over other models.Peer reviewe

    Affective Medicine: a review of Affective Computing efforts in Medical Informatics

    Get PDF
    Background: Affective computing (AC) is concerned with emotional interactions performed with and through computers. It is defined as “computing that relates to, arises from, or deliberately influences emotions”. AC enables investigation and understanding of the relation between human emotions and health as well as application of assistive and useful technologies in the medical domain. Objectives: 1) To review the general state of the art in AC and its applications in medicine, and 2) to establish synergies between the research communities of AC and medical informatics. Methods: Aspects related to the human affective state as a determinant of the human health are discussed, coupled with an illustration of significant AC research and related literature output. Moreover, affective communication channels are described and their range of application fields is explored through illustrative examples. Results: The presented conferences, European research projects and research publications illustrate the recent increase of interest in the AC area by the medical community. Tele-home healthcare, AmI, ubiquitous monitoring, e-learning and virtual communities with emotionally expressive characters for elderly or impaired people are few areas where the potential of AC has been realized and applications have emerged. Conclusions: A number of gaps can potentially be overcome through the synergy of AC and medical informatics. The application of AC technologies parallels the advancement of the existing state of the art and the introduction of new methods. The amount of work and projects reviewed in this paper witness an ambitious and optimistic synergetic future of the affective medicine field

    Emotions in context: examining pervasive affective sensing systems, applications, and analyses

    Get PDF
    Pervasive sensing has opened up new opportunities for measuring our feelings and understanding our behavior by monitoring our affective states while mobile. This review paper surveys pervasive affect sensing by examining and considering three major elements of affective pervasive systems, namely; “sensing”, “analysis”, and “application”. Sensing investigates the different sensing modalities that are used in existing real-time affective applications, Analysis explores different approaches to emotion recognition and visualization based on different types of collected data, and Application investigates different leading areas of affective applications. For each of the three aspects, the paper includes an extensive survey of the literature and finally outlines some of challenges and future research opportunities of affective sensing in the context of pervasive computing
    • 

    corecore