73 research outputs found

    BILAYER LIPID MEMBRANE (BLM) INTEGRATION INTO MICROFLUIDIC PLATFORMS WITH APPLICATION TOWARD BLM-BASED BIOSENSORS

    Get PDF
    Bilayer Lipid Membranes (BLMs) have been widely used as an experimental tool to investigate fundamental cellular membrane physics and ion channel formation and transduction. Traditional BLM experimentation is usually performed in a macro-sized electrophysiology rig, which suffers from several well-known issues. First, BLMs have short lifetimes (typically on the order of tens of minutes to a few hours) and the laborious, irreproducible membrane formation process must be repeatedly applied for long-term testing. Second, stray capacitance inherent to traditional test rigs limits the temporal response leading, for example, to poor resolution in determining fast ion channel translocation events. Lastly, BLM testing is done within a single site format thus limiting throughput and increasing data collection time. To mitigate the above drawbacks, BLM technology and microfluidic platforms can be integrated to advance the state-of-the-art of BLM-based biosensor technology. Realization of BLM-based microfluidic biosensors can offer significant improvement towards sensor response characteristics (e.g. lower noise floor, increased time response). In addition, microfluidic biosensing chips can be fabricated with multiple BLM test sites that allow for parallel testing thus increasing data collection efficiency. Other benefits that microfluidics offer are: small reagent sensing volumes, disposable packaging, mass manufacturability, device portability for field studies, and lower device cost. Novel polymer microfluidic platforms capable of both in-situ and ex-situ BLM formation are described in this work. The platforms have been demonstrated for the controlled delivery of trans-membrane proteins to the BLM sites, and monitoring of translocation events through these ion channels using integrated thin film Ag/AgCl electrodes. The detailed design, fabrication, and characterization of various micro-fabricated BLM platforms is presented in this dissertation

    New Trends and Applications in Femtosecond Laser Micromachining

    Get PDF
    This book contains the scientific contributions to the Special Issue entitled: "New Trends and Applications in Femtosecond Laser Micromachining". It covers an array of subjects, from the basics of femtosecond laser micromachining to specific applications in a broad spectra of fields such biology, photonics and medicine

    Production of the new pixel detector for the upgrade of the CMS experiment and study of anomalous couplings in the non-resonant Higgs bosons pair production in p-p collisions at sqrt(s) = 13 TeV

    Get PDF
    The present thesis work has been carried out in the framework of the CMS collaboration, one of the experiment designed to study the physics of the proton-proton collisions at the Large Hadron Collider (LHC) at CERN. Experimentation at CMS (and at ATLAS) led to the discovery of a new particle in 2012 which has been identified as the Higgs boson, the missing brick of the Standard Model of the fundamental interactions. All the experiments at LHC are upgrading their detectors in order to fulfill the continuous increment of the LHC luminosity and the consequent increment of the per collision event rate. The CMS upgrade project foresees, inter alia, the production of a new pixel detector (CMS Phase 1 Pixel Upgrade) to be commissioned at the beginning of 2017. Crucial part of the upgrade is the new readout chip (ROC) for the silicon sensor, psi46digV2respin, designed at the Paul Scherrer Institute (PSI) with a 250 nm CMOS technology. This chip represents the state of the art in the readout electronics for the silicon detectors. The thesis concerns the study and the development of test procedures for this new readout chip. Thanks to a long stay at PSI, I could provide an important contribution to the debug phases of the first version of the ROC and TBM, the chip that handles the various ROCs in the pixel module, and to the development of the software used by the whole collaboration for the ROC and module testing. This experience allowed me to be the expert for the installation and commissioning of the ROC readout system in all the production centres in Italy. Furthermore, I managed the ROC wafers test from the early project phases. The ROCs are produced on silicon wafers and undergo various processes before being assembled on the modules, e.g., metal deposition on the pixel pads, thinning and dicing. These processes lead mechanical and thermal stresses that can damage the chips. The ROC wafers test has thus been performed following the same procedure before and after the processing. In order to minimize the failing ROCs fraction mounted on the modules. It has been measured that the processing introduces a 5.2 % reduction of the number of perfectly working ROCs. The pixel detector production line, the module qualification process and the ROC wafers test results are reported in this thesis. The modifications performed on the ROC-sensor connection technology are also described. The new pixel detector installation will allow an increase of the tracks reconstruction efficiency and a 10-15 um resolution to be maintained in the interaction vertices reconstruction, independently from the increment of the mean number of events per p-p interaction from the current 15 to 50-60 in 2017. The excellent performances of the new pixel vertex detector plus the planned increment of the luminosity (a factor 35 between 2017 and the current value) could allow access to physical processes with a low cross section and a high number of b quarks in the final states. For this purpose, a preliminary study on the non-resonant Higgs bosons pair production in the fully hadronic decay channel bbbb is here presented. The study has been performed analysing the data collected by the CMS experiment in 2015, equal to 2.19 fb-1. This process has a low cross section, accordingly to the SM, and its measurement in p-p collision at centre of mass energies of 13-14 TeV is forecast only with a high amount of data (ab-1). The data collected in 2015 do not allow to set a reasonable exclusion limit on the cross section of this process and the analysis will be completely developed in 2016 and following years. The study of the Higgs bosons pair production is relevant because the pairs can be produced also after couplings which are not allowed by the Standard Model (anomalous), such as the higgs-gloun contact interaction. These anomalous couplings lead to an increment of the cross section of the process and to differences in the kinematics of the final states. The process of Higgs bosons pair production via anomalous couplings is described by a Lagrangian with five free parameters. This implies a difficulty in the identification of parameters space point to be experimentally investigated. I developed an analysis technique which allows, by studying simulated samples, to divide the parameters space in kinematically similar regions and to identify a benchmark in each of them. The distance among different points of the parameters space has been defined through a binned likelihood ratio and an iterative algorithm has been developed to group them together. Twelve regions which are kinematically equivalent have been identified in a 5-D space. The results of this study, described in this thesis, are collected in an article which is under publication on JHEP and they will be considered as guideline for the searches of non-resonant Higgs bosons pair production at CMS

    Micro/Nano Structures and Systems

    Get PDF
    Micro/Nano Structures and Systems: Analysis, Design, Manufacturing, and Reliability is a comprehensive guide that explores the various aspects of micro- and nanostructures and systems. From analysis and design to manufacturing and reliability, this reprint provides a thorough understanding of the latest methods and techniques used in the field. With an emphasis on modern computational and analytical methods and their integration with experimental techniques, this reprint is an invaluable resource for researchers and engineers working in the field of micro- and nanosystems, including micromachines, additive manufacturing at the microscale, micro/nano-electromechanical systems, and more. Written by leading experts in the field, this reprint offers a complete understanding of the physical and mechanical behavior of micro- and nanostructures, making it an essential reference for professionals in this field

    The Boston University Photonics Center annual report 2009-2010

    Full text link
    This repository item contains an annual report that summarizes activities of the Boston University Photonics Center for the period from July 2009 through June 2010. The report provides quantitative and descriptive information regarding photonics programs in education, interdisciplinary research, business innovation, and technology development. The Boston University Photonics Center (BUPC) is an interdisciplinary hub for education, research, scholarship, innovation, and technology development associated with practical uses of light.This report summarizes activities of the Boston University Photonics Center (BUPC) during the period July 2009 through June 2010. These activities span the Center’s complementary missions in education, research, technology development, and commercialization. In education, twenty-three BUPC graduate students received Ph.D. diplomas. BUPC faculty taught thirty-one photonics courses. Five graduate students were funded through the Photonics Fellowship Program. BUPC supported a Research Experiences for Undergraduates (REU) site in Photonics, which hosted summer interns in a ten-week program. Each REU student presented their research results to a panel of faculty and graduate students. Professors Goldberg and Swan continued their work with K-12 student outreach programs. Professor Goldberg’s Boston Urban Fellows Project started its sixth year. Professor Swan’s collaborative Four Schools for Women in Engineering program entered its third year. For more on our education programs, turn to the Education section on page 67. In research, BUPC faculty published journal papers spanning the field of photonics. Twelve patents were awarded to faculty this year for new innovations in the field. A number of awards for outstanding achievement in education and research were presented to BUPC faculty members. These honors include NSF CAREER Awards for Professors Altug, Dal Negro and Reinhard. New external grant funding for the 2009-2010 fiscal year totaled 21.1M,including21.1M, including 4.0M through a Cooperative Agreement with the U.S. Army Research Laboratory (ARL). For more information on our research activities, turn to the Research section on page 24. In technology development, the Department of Defense (DoD) continued to support the COBRA prototype systems. These photonics-technologies were pioneered by BUPC faculty and staff and have been deployed for field test and use at the United States Army Medical Research Institute for Infectious Diseases. New technology development projects for nuclear weapon detection, biodosimetry and terahertz imaging were launched and previously developed technologies for bacterial and viral sensing advanced toward commercial transition. For more information on our technology development pipeline and projects, turn to the Technology Development section on page 54. In commercialization, the business incubator continues to operate at capacity. Its tenants include more than a dozen technology companies with core business interests primarily in photonics and life sciences. It houses several companies founded by current and former BU faculty and students and provides students with an opportunity to assist, observe, and learn from start-up companies. For more information about business incubator activities, turn to the Business Incubation chapter in the Facilities and Equipment section on page 84. In early 2010, the BUPC unveiled a five-year strategic plan as part of the University’s comprehensive review of centers and institutes. The BUPC strategic plan will enhance the Center’s position as an international leader in photonics research. For more information about the strategic plan, turn to the BUPC Strategic Plan section on page 8

    Reducing Decoherence in dc SQUID Phase Qubits

    Get PDF
    This thesis examines sources of dissipation and dephasing in a dc SQUID phase qubit. Coupling of the qubit to the bias lines and lossy dielectrics causes the qubit to lose quantum information through a process known generally as decoherence. Using knowledge of the possible sources of decoherence, a dc SQUID phase qubit is designed with parameters that should have made it resistant to dissipation and dephasing from those sources. Device PB9 was a dc SQUID with one small area 0.23 (μm)2 Josephson junction with a critical current of 130 nA, which was meant to be the qubit junction, and a larger area 5 (μm)2 junction with a critical current of 8.6 μA, which acted as part of an inductive isolation network. The qubit junction was shunted by a 1.5 pF low-loss interdigitated capacitor. The dc current bias line had an on-chip LC filter with a cutoff frequency of 180 MHz. The other control lines were also designed to minimize coupling of dissipative elements to the qubit. According to a theoretical model of the dissipation and dephasing, the qubit was expected to have an energy relaxation T1 ≤ 8.4 μs and dephasing time Tphi ~ 1 μs. Because of the relatively high Josephson inductance of the qubit junction, the device did not act perform like a conventional isolated single-junction phase qubit. Instead, the resonant modes that I observed were the normal modes of the entire SQUID. At 20 mK and a frequency of 4.047 GHz, the maximum energy relaxation time of the device was found to be 350 ± 70 ns, despite the optimized design. Through a study of T1 versus applied flux, T1 was found to depend on the strength of the coupling of the microwave drive line to the qubit. When the line was more coupled, T1 was shorter. This was evidence that the microwave line was overcoupled to the qubit, and was limiting the lifetime of the excited state T1. Through a study of the spectroscopic coherence time T2*, which measured the effects of low-frequency inhomogeneous broadening and higher frequency dephasing from noise, I discovered that device PB9 has several sweet spots. In particular, the presence of a sweet spot with respect to critical current fluctuations allowed me to identify critical current noise as a major source of broadening and dephasing in the qubit. From the spectroscopy I estimated the 1/f critical current noise power density at 1 Hz was and the 1/f flux noise power spectral density at 1 Hz was . Both of these values were quite high, possibly due to switching of the device between measurements

    Scalable designs and methods for heterogeneous electronic-photonic integrated circuitry

    Get PDF
    A set of semiconductor designs shown to be capable of facilitating scalable and reconfigurable layouts for electronic-photonic integrated circuitry is presented. Three emphases are established to outline and discuss the methods and advantages of merging stand-alone optical components into integrated heterogeneous systems, specifically for implementing optical sensing, efficient laser wavelength tuning, and III-V-on-Si semiconductor fabrication techniques together on a single platform. Considerations regarding the optical geometries and power efficiency of each design are reiterated to assure that each design is compatible with the goals of system-level integration in either biochemical point-of-use or telecommunications applications. These three approaches to scalable photonic designs are then investigated in their ability to offer dynamic controls of optical signals and their novel usage of heterogeneous material patterning. The optical sensing platform directly integrates multiple linear variable filters (LVFs) atop a CMOS image sensor for electronic controls of detecting a biochemical fluorescent or absorptive optical signal signature, enabling good wavelength resolution (3.77−6.08 nm) over a wide-band detection spectrum. Detection limits of 0.28 nM for Quantum Dot emitters and 32 ng/mL for near-infrared fluorescent dyes are found in this integrated design, providing comparable results in the compact optical platform to conventional laboratory spectrometers. The instrument is then extended in its usage by testing on point-of-use detection tests via discerning the concentration of free-chlorine in water colorimetrically. The tunable laser cavity design integrates together a GaN waveguide into a standard InGaAsP telecom (1550 nm) edge-emitting laser atop silicon, allowing for wide-band tuning via the strong anisotropic effects solved for in wurtzite GaN. A tuning parameter based off a refractive index variation, Δ, is found to be at |1.75∙10E−4|, based off the electro-optic effects in conjunction with an etched grating geometry designed directly into the coupled GaN waveguide, with the structure further extended into a Y-branch laser cavity to enable the Vernier effect for wideband tuning via mode-hopping. A separate GaN-based design, consisting of an RF signal modulator that launches a surface acoustic wave (SAW) into a cavity to produce a highly controllable refractive index variation, Δ, via the photo-elastic and photo-elastic effects, is found to produce a large tuning parameter of |1.84∙10E−3|. These effects are then described in their application to dynamically controllable effects for dense wavelength division multiplexing (DWDM) and how the underlying electronic platform enables this, providing advantages over larger footprint or less efficient designs. The fabrication techniques designed provide a method to enable bonding of III-V epitaxial wafers onto a silicon carrier wafer for large-scale processing before final bonding onto CMOS. A processing recipe takes bulk GaAs epitaxial structures and constructs a method for reversibly bonding and processing them on a silicon carrier wafer as III-V islands, ready for final large scale flip-chip bonding onto aligning CMOS features. Additional findings discuss the merits of various etch processes and techniques such that they are compatible to the heterogeneous III-V-on-Si patterning as laid out. The methods optimized allow for simultaneous, heterogeneous development of system-level device integration such that further processing can place various III-V devices side-by-side and process geometries in unison. Processing steps and their results are presented. The extension of this method to different III-V alloys beyond GaAs entirely is therefore considered for even larger-scale system design across photonic elements. Each set of findings presents both the relevant photonic device characteristics and also a method on how to intersect these devices with a paired CMOS electronic system on silicon, so that a single unified electronic-photonic schematic can be made. Accompanying these conclusions is a range of experimental work ranging from simulation studies, to full-scale integrable sensing designs and their testing, to detailed cleanroom-based fabrication processes for designing the system of III-V-on-Si patterns. A final set of conclusions relates the three tracks of research as being part of a common path forward in scalable photonics designs. Forecasts are then made on how the field of electronic-photonic integration and its applications utilized herein may yet evolve and potentially encompass findings or methodologies from this work

    Reliability Aspects of Microelectromechanical Systems for Space Applications:Mechanical Properties of Structural Materials and Analysis of Packaging Strains

    Get PDF
    Microelectromechanical systems (MEMS) are an essential ingredient in many technological innovations and a source of game-changing inventions in the automotive industry, space exploration, consumer electronics and medical applications due to its capability to control mechanical effects on a micrometer scale. Especially where accessibility, connectivity, system size and energy supply are limited, microsystems can be an enabling technology for sensing, actuation and data transmission. However, their applicability depends on their ability to operate reliably even in extremely hazardous situations such as in space, where the devices are exposed to high levels of radiation, large temperature variations and accelerations. Improving the design and increasing the lifetime of devices requires the identification and detailed understanding of failure modes. This thesis was aimed at deepening the understanding of fabrication-related effects and space-relevant environmental hazards on the mechanical properties of MEMS on the material and the systems level. Although countless microsystems have been developed in recent years, several vital questions related to the reliability of MEMS systems and MEMS materials remain open to date. Two topics which merit special attention were at the center of this study: First, the influence of packaging on the functioning and the reliability of microsystems and second, the reliability of microsystems and their materials under the harsh environmental conditions imposed by space applications. Out of this area of interest the following questions were studied: Strain analysis in MEMS package by HRXRD: Packaging offers protection to the microsystem and aids to maintain a stable environment. However, it also influences the strain distribution in the system, and the energy losses in resonant structures due to air being squeezed in thin gaps between the resonator and the package. The distribution of residual stresses and bonding stresses in a MEMS wafer-level package was analyzed by high-resolution x-ray diffraction (HRXRD) and the possibility of nondestructive investigation of the strain distribution in sub-surface structures was demonstrated. Air damping in MEMS packages: An improved framework for the analysis of air-damping in microresonators and their packages has been presented. Understanding the pressure sensitivity allows determining the admissible pressure levels in resonator packages, above which the performance is deteriorated by losses through air-damping. In addition, monitoring the resonance frequency and quality factor variations over time can be used to determine the hermeticity and leak rates in very small packages where the traditional helium leak test method fails because the relevant leak rates are below its sensitivity. Reliability of MEMS under space-relevant environmental hazards: The performance of resonant microstructures is directly linked to the Youngâs modulus of the utilized material and therefore they are very sensitive to variations thereof. The susceptibility of microfabricated structural materials (SU-8 and silicon) to proton irradiation was investigated. In order to isolate the influence of radiation on the materials themselves, single material resonators with contactless actuation and readout were tested. The experimental results showed that single crystal silicon and SU-8 were tolerant to high doses of proton radiation and are hence very well suited for MEMS in space applications
    • …
    corecore