2,836 research outputs found

    Interactive Unawareness Revisited

    Full text link
    We analyze a model of interactive unawareness introduced by Heifetz, Meier and Schipper (HMS). We consider two axiomatizations for their model, which capture different notions of validity. These axiomatizations allow us to compare the HMS approach to both the standard (S5) epistemic logic and two other approaches to unawareness: that of Fagin and Halpern and that of Modica and Rustichini. We show that the differences between the HMS approach and the others are mainly due to the notion of validity used and the fact that the HMS is based on a 3-valued propositional logic.Comment: 26 page

    A logic for reasoning about upper probabilities

    Full text link
    We present a propositional logic %which can be used to reason about the uncertainty of events, where the uncertainty is modeled by a set of probability measures assigning an interval of probability to each event. We give a sound and complete axiomatization for the logic, and show that the satisfiability problem is NP-complete, no harder than satisfiability for propositional logic.Comment: A preliminary version of this paper appeared in Proc. of the 17th Conference on Uncertainty in AI, 200

    Refinement Modal Logic

    Full text link
    In this paper we present {\em refinement modal logic}. A refinement is like a bisimulation, except that from the three relational requirements only `atoms' and `back' need to be satisfied. Our logic contains a new operator 'all' in addition to the standard modalities 'box' for each agent. The operator 'all' acts as a quantifier over the set of all refinements of a given model. As a variation on a bisimulation quantifier, this refinement operator or refinement quantifier 'all' can be seen as quantifying over a variable not occurring in the formula bound by it. The logic combines the simplicity of multi-agent modal logic with some powers of monadic second-order quantification. We present a sound and complete axiomatization of multi-agent refinement modal logic. We also present an extension of the logic to the modal mu-calculus, and an axiomatization for the single-agent version of this logic. Examples and applications are also discussed: to software verification and design (the set of agents can also be seen as a set of actions), and to dynamic epistemic logic. We further give detailed results on the complexity of satisfiability, and on succinctness

    Characterizing perfect recall using next-step temporal operators in S5 and sub-S5 Epistemic Temporal Logic

    Full text link
    We review the notion of perfect recall in the literature on interpreted systems, game theory, and epistemic logic. In the context of Epistemic Temporal Logic (ETL), we give a (to our knowledge) novel frame condition for perfect recall, which is local and can straightforwardly be translated to a defining formula in a language that only has next-step temporal operators. This frame condition also gives rise to a complete axiomatization for S5 ETL frames with perfect recall. We then consider how to extend and consolidate the notion of perfect recall in sub-S5 settings, where the various notions discussed are no longer equivalent

    Set-Theoretic Completeness for Epistemic and Conditional Logic

    Full text link
    The standard approach to logic in the literature in philosophy and mathematics, which has also been adopted in computer science, is to define a language (the syntax), an appropriate class of models together with an interpretation of formulas in the language (the semantics), a collection of axioms and rules of inference characterizing reasoning (the proof theory), and then relate the proof theory to the semantics via soundness and completeness results. Here we consider an approach that is more common in the economics literature, which works purely at the semantic, set-theoretic level. We provide set-theoretic completeness results for a number of epistemic and conditional logics, and contrast the expressive power of the syntactic and set-theoretic approachesComment: This is an expanded version of a paper that appeared in AI and Mathematics, 199
    • …
    corecore