8,820 research outputs found

    Exploiting boundary states of imperfect spin chains for high-fidelity state transfer

    Full text link
    We study transfer of a quantum state through XX spin chains with static imperfections. We combine the two standard approaches for state transfer based on (i) modulated couplings between neighboring spins throughout the spin chain and (ii) weak coupling of the outermost spins to an unmodulated spin chain. The combined approach allows us to design spin chains with modulated couplings and localized boundary states, permitting high-fidelity state transfer in the presence of random static imperfections of the couplings. The modulated couplings are explicitly obtained from an exact algorithm using the close relation between tridiagonal matrices and orthogonal polynomials [Linear Algebr. Appl. 21, 245 (1978)]. The implemented algorithm and a graphical user interface for constructing spin chains with boundary states (spinGUIn) are provided as Supplemental Material.Comment: 7 pages, 3 figures + spinGUIn description and Matlab files iepsolve.m, spinGUIn.fig, spinGUIn.

    Nonabelian dark matter: models and constraints

    Full text link
    Numerous experimental anomalies hint at the existence of a dark matter (DM) multiplet chi_i with small mass splittings. We survey the simplest such models which arise from DM in the low representations of a new SU(2) gauge symmetry, whose gauge bosons have a small mass mu < 1 GeV. We identify preferred parameters M_chi ~ 1 TeV, mu ~ 100 MeV, alpha_g ~ 0.04 and the chi chi -> 4e annihilation channel, for explaining PAMELA, Fermi, and INTEGRAL/SPI lepton excesses, while remaining consistent with constraints from relic density, diffuse gamma rays and the CMB. This consistency is strengthened if DM annihilations occur mainly in subhalos, while excitations (relevant to the excited DM proposal to explain the 511 keV excess) occur in the galactic center (GC), due to higher velocity dispersions in the GC, induced by baryons. We derive new constraints and predictions which are generic to these models. Notably, decays of excited DM states chi' -> chi gamma arise at one loop and could provide a new signal for INTEGRAL/SPI; big bang nucleosynthesis (BBN) constraints on the density of dark SU(2) gauge bosons imply a lower bound on the mixing parameter epsilon between the SU(2) gauge bosons and photon. These considerations rule out the possibility of the gauge bosons that decay into e^+e^- being long-lived. We study in detail models of doublet, triplet and quintuplet DM, showing that both normal and inverted mass hierarchies can occur, with mass splittings that can be parametrically smaller, e.g., O(100) keV, than the generic MeV scale of splittings. A systematic treatment of Z_2 symmetry which insures the stability of the intermediate DM state is given for cases with inverted mass hierarchy, of interest for boosting the 511 keV signal from the excited dark matter mechanism.Comment: 28 pages, 17 figures; v2. added brief comment, reference

    Rapidly-oscillating scatteringless non-Hermitian potentials and the absence of Kapitza stabilization

    Full text link
    In the framework of the ordinary non-relativistic quantum mechanics, it is known that a quantum particle in a rapidly-oscillating bound potential with vanishing time average can be scattered off or even trapped owing to the phenomenon of dynamical (Kapitza) stabilization. A similar phenomenon occurs for scattering and trapping of optical waves. Such a remarkable result stems from the fact that, even though the particle is not able to follow the rapid external oscillations of the potential, these are still able to affect the average dynamics by means of an effective -albeit small- nonvanishing potential contribution. Here we consider the scattering and dynamical stabilization problem for matter or classical waves by a bound potential with oscillating ac amplitude f(t)f(t) in the framework of a non-Hermitian extension of the Schr\"odinger equation, and predict that for a wide class of imaginary amplitude modulations f(t)f(t) possessing a one-sided Fourier spectrum the oscillating potential is effectively canceled, i.e. it does not have any effect to the particle dynamics, contrary to what happens in the Hermitian caseComment: 7 pages, 3 figure

    Regularized Newton Methods for X-ray Phase Contrast and General Imaging Problems

    Full text link
    Like many other advanced imaging methods, x-ray phase contrast imaging and tomography require mathematical inversion of the observed data to obtain real-space information. While an accurate forward model describing the generally nonlinear image formation from a given object to the observations is often available, explicit inversion formulas are typically not known. Moreover, the measured data might be insufficient for stable image reconstruction, in which case it has to be complemented by suitable a priori information. In this work, regularized Newton methods are presented as a general framework for the solution of such ill-posed nonlinear imaging problems. For a proof of principle, the approach is applied to x-ray phase contrast imaging in the near-field propagation regime. Simultaneous recovery of the phase- and amplitude from a single near-field diffraction pattern without homogeneity constraints is demonstrated for the first time. The presented methods further permit all-at-once phase contrast tomography, i.e. simultaneous phase retrieval and tomographic inversion. We demonstrate the potential of this approach by three-dimensional imaging of a colloidal crystal at 95 nm isotropic resolution.Comment: (C)2016 Optical Society of America. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modifications of the content of this paper are prohibite

    Web-Based Visualization of Very Large Scientific Astronomy Imagery

    Full text link
    Visualizing and navigating through large astronomy images from a remote location with current astronomy display tools can be a frustrating experience in terms of speed and ergonomics, especially on mobile devices. In this paper, we present a high performance, versatile and robust client-server system for remote visualization and analysis of extremely large scientific images. Applications of this work include survey image quality control, interactive data query and exploration, citizen science, as well as public outreach. The proposed software is entirely open source and is designed to be generic and applicable to a variety of datasets. It provides access to floating point data at terabyte scales, with the ability to precisely adjust image settings in real-time. The proposed clients are light-weight, platform-independent web applications built on standard HTML5 web technologies and compatible with both touch and mouse-based devices. We put the system to the test and assess the performance of the system and show that a single server can comfortably handle more than a hundred simultaneous users accessing full precision 32 bit astronomy data.Comment: Published in Astronomy & Computing. IIPImage server available from http://iipimage.sourceforge.net . Visiomatic code and demos available from http://www.visiomatic.org
    • …
    corecore