3,407 research outputs found

    Ethernet - a survey on its fields of application

    Get PDF
    During the last decades, Ethernet progressively became the most widely used local area networking (LAN) technology. Apart from LAN installations, Ethernet became also attractive for many other fields of application, ranging from industry to avionics, telecommunication, and multimedia. The expanded application of this technology is mainly due to its significant assets like reduced cost, backward-compatibility, flexibility, and expandability. However, this new trend raises some problems concerning the services of the protocol and the requirements for each application. Therefore, specific adaptations prove essential to integrate this communication technology in each field of application. Our primary objective is to show how Ethernet has been enhanced to comply with the specific requirements of several application fields, particularly in transport, embedded and multimedia contexts. The paper first describes the common Ethernet LAN technology and highlights its main features. It reviews the most important specific Ethernet versions with respect to each application field’s requirements. Finally, we compare these different fields of application and we particularly focus on the fundamental concepts and the quality of service capabilities of each proposal

    Simulation of Mixed Critical In-vehicular Networks

    Full text link
    Future automotive applications ranging from advanced driver assistance to autonomous driving will largely increase demands on in-vehicular networks. Data flows of high bandwidth or low latency requirements, but in particular many additional communication relations will introduce a new level of complexity to the in-car communication system. It is expected that future communication backbones which interconnect sensors and actuators with ECU in cars will be built on Ethernet technologies. However, signalling from different application domains demands for network services of tailored attributes, including real-time transmission protocols as defined in the TSN Ethernet extensions. These QoS constraints will increase network complexity even further. Event-based simulation is a key technology to master the challenges of an in-car network design. This chapter introduces the domain-specific aspects and simulation models for in-vehicular networks and presents an overview of the car-centric network design process. Starting from a domain specific description language, we cover the corresponding simulation models with their workflows and apply our approach to a related case study for an in-car network of a premium car

    High-Speed Communications Over Polymer Optical Fibers for In-Building Cabling and Home Networking

    Get PDF
    This paper focuses on high-speed cabling using polymer optical fibers (POF) in home networking. In particular, we report about the results obtained in the POF-ALL European Project, which is relevant to the Sixth Framework Program, and after two years of the European Project POF-PLUS, which is relevant to the Seventh Framework Program, focusing on their research activities about the use of poly-metyl-metha-acrilate step-index optical fibers for home applications. In particular, for that which concerns POF-ALL, we will describe eight-level pulse amplitude modulation (8-PAM) and orthogonal frequency-division multiplexing (OFDM) approaches for 100-Mb/s transmission over a target distance of 300 m, while for that which concerns POF-PLUS, we will describe a fully digital and a mixed analog-digital solution, both based on intensity modulation direct detection, for transmitting 1 Gb/s over a target distance of 50 m. The ultimate experimental results from the POF-ALL project will be given, while for POF-PLUS, which is still ongoing, we will only show our most recent preliminary results

    The future roadmap of in-vehicle network processing: a HW-centric (R-)evolution

    Get PDF
    Š 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The automotive industry is undergoing a deep revolution. With the race towards autonomous driving, the amount of technologies, sensors and actuators that need to be integrated in the vehicle increases exponentially. This imposes new great challenges in the vehicle electric/electronic (E/E) architecture and, especially, in the In-Vehicle Network (IVN). In this work, we analyze the evolution of IVNs, and focus on the main network processing platform integrated in them: the Gateway (GW). We derive the requirements of Network Processing Platforms that need to be fulfilled by future GW controllers focusing on two perspectives: functional requirements and structural requirements. Functional requirements refer to the functionalities that need to be delivered by these network processing platforms. Structural requirements refer to design aspects which ensure the feasibility, usability and future evolution of the design. By focusing on the Network Processing architecture, we review the available options in the state of the art, both in industry and academia. We evaluate the strengths and weaknesses of each architecture in terms of the coverage provided for the functional and structural requirements. In our analysis, we detect a gap in this area: there is currently no architecture fulfilling all the requirements of future automotive GW controllers. In light of the available network processing architectures and the current technology landscape, we identify Hardware (HW) accelerators and custom processor design as a key differentiation factor which boosts the devices performance. From our perspective, this points to a need - and a research opportunity - to explore network processing architectures with a strong HW focus, unleashing the potential of next-generation network processors and supporting the demanding requirements of future autonomous and connected vehicles.Peer ReviewedPostprint (published version

    A Modular, Low Latency, A2B-based Architecture for Distributed Multichannel Full-Digital Audio Systems

    Get PDF
    Despite the increasing demand for multichannel audio systems, existing solutions are still mainly analog or audio-over-IP based, leading to well-known limitations: bulky wiring, high latency (0.5-2 ms), and expensive devices for protocol stack management. This paper presents a cost-effective, low latency, full-digital solution that overcomes all the previously mentioned problems. The proposed architecture is based on the new Automotive Audio Bus (A2B) protocol. It guarantees deterministic latency of 2 samples, 32 downstream/upstream channels over a single Unshielded Twisted Pair (UTP) cable and phase-aligned signals. A single A2B chip is required for each node, reducing dramatically the system cost. The developed architecture is composed by a main board and an A2B network. The main board handles up to 64 channels, and it converts standard protocols usually employed for audio signal delivery, such as AES10, AVB and AES67, into A2B streams and vice versa. The A2B network can include a series of devices, for instance power amplifiers, codecs, DSPs, and transducers. There are many application examples including, but not limited to, transducer arrays (e.g., microphone, loudspeaker, accelerometer arrays), audio distribution in meeting rooms, Wave Field Synthesis (WFS), Ambisonics immersive audio systems and Active Noise Control (ANC). A modular and portable WFS system was developed employing the above-described architecture. It is based on eight channels soundbars, which can be daisy-chained in reconfigurable geometries and featuring up to 192 channels

    Software for Analysis of Automotive Ethernet Communication

    Get PDF
    Cílem této práce je implementovat systém, který interpretuje pakety z 100/1000BASE-T1 Automotive Ethernetu za pomocí běžného osobního počítače připojenému k převodníku médií z Automotive Ethernetu na běžný Ethernet. Především byly navrženy metody pro zachytávání paketů Automotive ethernetu, filtrování příchozí komunikace, interpretaci dat za pomocí Automotive Open System Architecture Extensible Markup Language a logování zachycených dat do různých formátů. Navržený systém je modulární a může být využit pro zpracování dat z grafického rozhraní, příkazového řádku Windows, Tcl konzole, nebo z jiného programu. Funkčnost systému byla testována v několika simulacích za použití simulátoru vestavěné řídicí jednotky.The aim of this work is to implement 100/1000BASE-T1 Automotive Ethernet packet interpreting system for a common personal computer connected to media converter from Automotive Ethernet device to conventional Ethernet. Especially, methods for Automotive packet capturing, filtering incoming communication, interpreting data with Automotive Open System Architecture Extensible Markup Language (AUTOSAR XML or ARXML), and logging of captured data to various formats are proposed. The designed system is modular, and it can be used from Graphical User Interface (GUI), Windows Command Prompt interface, Tcl console, or another program. The functionality of the system has been tested in several simulations using captured data from the Electronic Control Unit (ECU)

    Ethernet Over Plastic Optical Fiber for Use in the Control System Network for Automotive Applications

    Get PDF
    Plastic optical fiber (POF) for use in automotive applications is not a new concept and has been used in some vehicles for infotainment media distribution within the Media Oriented Systems Transport protocol. However, the use of POF for the control network’s physical layer is a concept that has not been implemented in automotive applications. Many aspects of a vehicle can be improved by implementing POF as the physical backbone for the control network. Currently, the Controller Area Network (CAN) is used as the primary backbone control network protocol for most automobiles as it is inexpensive and reliable. However, CAN is limited to 500 kbps in most vehicles and is easily accessible. Ethernet may provide the improvements of speed and security needed in today’s feature rich and connected vehicles. The feasibility of implementing Ethernet over POF as the control network for automotive applications is the topic of this research investigation
    • …
    corecore