1,550 research outputs found

    Improving reconfigurable systems reliability by combining periodical test and redundancy techniques: a case study

    Get PDF
    This paper revises and introduces to the field of reconfigurable computer systems, some traditional techniques used in the fields of fault-tolerance and testing of digital circuits. The target area is that of on-board spacecraft electronics, as this class of application is a good candidate for the use of reconfigurable computing technology. Fault tolerant strategies are used in order for the system to adapt itself to the severe conditions found in space. In addition, the paper describes some problems and possible solutions for the use of reconfigurable components, based on programmable logic, in space applications

    A Self Learning based Diagnosis of Faulty Configurable Logic Blocks (CLBs) in Field Programmable Gate Arrays (FPGA) Using Reconfiguration

    Get PDF
    In many areas of digital systems Field programmable gate arrays (FPGAs) are most important for designing. The main usesof FPGAs are, these are programmable, and faults can be easily diagnosed, once faulty locations are identified. The locationand identification of faults in FPGA has not yet been explored much. A methodology for the testing and diagnosis of faultsin FPGAs is presented based on automatic circuit reconfiguration. The proposed method imposes no hardware overhead.This method can also be used in fault-tolerant systems, in which a good functional circuit can be still mapped to a FPGAwith faulty elements, as long as the fault sites are known. The logic synthesis software assigns the Configurable Logic Block(CLB) resources without system designer intervention. It is very advantageous for the designer to understand certain CLBdetails, including the varying capabilities of the look-up tables (LUTs), the physical direction of the carry propagation, thenumber and distribution of the available flip-flops. FPGA consists of 25 Configurable Logic Blocks (CLB). Each CLB isassigned with an application. The inputs for CLB are applied from a file. There is also a fault file in which error CLBs arepresent. If there is error CLBs, those CLBs are replaced by the spare CLBs. Finally, the errors CLBs are corrected withproper inputs and modified bits are displayed. So efficiency is not reduced and configurability is done without replacing thefaulty components. This FPGA can tolerate not only single faults but also for multiple faults. The power analysis resultsprovided for fault free, stuck-at-1, stuck-at-0 faults in digital circuits validate the point that faulty circuits dissipates moreand hence draw more power.Key words: Configurable Logic Block (CLB), Power Dissipation, Fault Tolerance, Fault Diagnosis, Faults, Full adder (FA)

    Strategies for neural networks in ballistocardiography with a view towards hardware implementation

    Get PDF
    A thesis submitted for the degree of Doctor of Philosophy at the University of LutonThe work described in this thesis is based on the results of a clinical trial conducted by the research team at the Medical Informatics Unit of the University of Cambridge, which show that the Ballistocardiogram (BCG) has prognostic value in detecting impaired left ventricular function before it becomes clinically overt as myocardial infarction leading to sudden death. The objective of this study is to develop and demonstrate a framework for realising an on-line BCG signal classification model in a portable device that would have the potential to find pathological signs as early as possible for home health care. Two new on-line automatic BeG classification models for time domain BeG classification are proposed. Both systems are based on a two stage process: input feature extraction followed by a neural classifier. One system uses a principal component analysis neural network, and the other a discrete wavelet transform, to reduce the input dimensionality. Results of the classification, dimensionality reduction, and comparison are presented. It is indicated that the combined wavelet transform and MLP system has a more reliable performance than the combined neural networks system, in situations where the data available to determine the network parameters is limited. Moreover, the wavelet transfonn requires no prior knowledge of the statistical distribution of data samples and the computation complexity and training time are reduced. Overall, a methodology for realising an automatic BeG classification system for a portable instrument is presented. A fully paralJel neural network design for a low cost platform using field programmable gate arrays (Xilinx's XC4000 series) is explored. This addresses the potential speed requirements in the biomedical signal processing field. It also demonstrates a flexible hardware design approach so that an instrument's parameters can be updated as data expands with time. To reduce the hardware design complexity and to increase the system performance, a hybrid learning algorithm using random optimisation and the backpropagation rule is developed to achieve an efficient weight update mechanism in low weight precision learning. The simulation results show that the hybrid learning algorithm is effective in solving the network paralysis problem and the convergence is much faster than by the standard backpropagation rule. The hidden and output layer nodes have been mapped on Xilinx FPGAs with automatic placement and routing tools. The static time analysis results suggests that the proposed network implementation could generate 2.7 billion connections per second performance

    Functional Testing of Processor Cores in FPGA-Based Applications

    Get PDF
    Embedded processor cores, which are widely used in SRAM-based FPGA applications, are candidates for SEU (Single Event Upset)-induced faults and need to be tested occasionally during system exploitation. Verifying a processor core is a difficult task, due to its complexity and the lack of user knowledge about the core-implementation details. In user applications, processor cores are normally tested by executing some kind of functional test in which the individual processor's instructions are tested with a set of deterministic test patterns, and the results are then compared with the stored reference values. For practical reasons the number of test patterns and corresponding results is usually small, which inherently leads to low fault coverage. In this paper we develop a concept that combines the whole instruction-set test into a compact test sequence, which can then be repeated with different input test patterns. This improves the fault coverage considerably with no additional memory requirements

    New Fault Detection, Mitigation and Injection Strategies for Current and Forthcoming Challenges of HW Embedded Designs

    Full text link
    Tesis por compendio[EN] Relevance of electronics towards safety of common devices has only been growing, as an ever growing stake of the functionality is assigned to them. But of course, this comes along the constant need for higher performances to fulfill such functionality requirements, while keeping power and budget low. In this scenario, industry is struggling to provide a technology which meets all the performance, power and price specifications, at the cost of an increased vulnerability to several types of known faults or the appearance of new ones. To provide a solution for the new and growing faults in the systems, designers have been using traditional techniques from safety-critical applications, which offer in general suboptimal results. In fact, modern embedded architectures offer the possibility of optimizing the dependability properties by enabling the interaction of hardware, firmware and software levels in the process. However, that point is not yet successfully achieved. Advances in every level towards that direction are much needed if flexible, robust, resilient and cost effective fault tolerance is desired. The work presented here focuses on the hardware level, with the background consideration of a potential integration into a holistic approach. The efforts in this thesis have focused several issues: (i) to introduce additional fault models as required for adequate representativity of physical effects blooming in modern manufacturing technologies, (ii) to provide tools and methods to efficiently inject both the proposed models and classical ones, (iii) to analyze the optimum method for assessing the robustness of the systems by using extensive fault injection and later correlation with higher level layers in an effort to cut development time and cost, (iv) to provide new detection methodologies to cope with challenges modeled by proposed fault models, (v) to propose mitigation strategies focused towards tackling such new threat scenarios and (vi) to devise an automated methodology for the deployment of many fault tolerance mechanisms in a systematic robust way. The outcomes of the thesis constitute a suite of tools and methods to help the designer of critical systems in his task to develop robust, validated, and on-time designs tailored to his application.[ES] La relevancia que la electrónica adquiere en la seguridad de los productos ha crecido inexorablemente, puesto que cada vez ésta copa una mayor influencia en la funcionalidad de los mismos. Pero, por supuesto, este hecho viene acompañado de una necesidad constante de mayores prestaciones para cumplir con los requerimientos funcionales, al tiempo que se mantienen los costes y el consumo en unos niveles reducidos. En este escenario, la industria está realizando esfuerzos para proveer una tecnología que cumpla con todas las especificaciones de potencia, consumo y precio, a costa de un incremento en la vulnerabilidad a múltiples tipos de fallos conocidos o la introducción de nuevos. Para ofrecer una solución a los fallos nuevos y crecientes en los sistemas, los diseñadores han recurrido a técnicas tradicionalmente asociadas a sistemas críticos para la seguridad, que ofrecen en general resultados sub-óptimos. De hecho, las arquitecturas empotradas modernas ofrecen la posibilidad de optimizar las propiedades de confiabilidad al habilitar la interacción de los niveles de hardware, firmware y software en el proceso. No obstante, ese punto no está resulto todavía. Se necesitan avances en todos los niveles en la mencionada dirección para poder alcanzar los objetivos de una tolerancia a fallos flexible, robusta, resiliente y a bajo coste. El trabajo presentado aquí se centra en el nivel de hardware, con la consideración de fondo de una potencial integración en una estrategia holística. Los esfuerzos de esta tesis se han centrado en los siguientes aspectos: (i) la introducción de modelos de fallo adicionales requeridos para la representación adecuada de efectos físicos surgentes en las tecnologías de manufactura actuales, (ii) la provisión de herramientas y métodos para la inyección eficiente de los modelos propuestos y de los clásicos, (iii) el análisis del método óptimo para estudiar la robustez de sistemas mediante el uso de inyección de fallos extensiva, y la posterior correlación con capas de más alto nivel en un esfuerzo por recortar el tiempo y coste de desarrollo, (iv) la provisión de nuevos métodos de detección para cubrir los retos planteados por los modelos de fallo propuestos, (v) la propuesta de estrategias de mitigación enfocadas hacia el tratamiento de dichos escenarios de amenaza y (vi) la introducción de una metodología automatizada de despliegue de diversos mecanismos de tolerancia a fallos de forma robusta y sistemática. Los resultados de la presente tesis constituyen un conjunto de herramientas y métodos para ayudar al diseñador de sistemas críticos en su tarea de desarrollo de diseños robustos, validados y en tiempo adaptados a su aplicación.[CA] La rellevància que l'electrònica adquireix en la seguretat dels productes ha crescut inexorablement, puix cada volta més aquesta abasta una major influència en la funcionalitat dels mateixos. Però, per descomptat, aquest fet ve acompanyat d'un constant necessitat de majors prestacions per acomplir els requeriments funcionals, mentre es mantenen els costos i consums en uns nivells reduïts. Donat aquest escenari, la indústria està fent esforços per proveir una tecnologia que complisca amb totes les especificacions de potència, consum i preu, tot a costa d'un increment en la vulnerabilitat a diversos tipus de fallades conegudes, i a la introducció de nous tipus. Per oferir una solució a les noves i creixents fallades als sistemes, els dissenyadors han recorregut a tècniques tradicionalment associades a sistemes crítics per a la seguretat, que en general oferixen resultats sub-òptims. De fet, les arquitectures empotrades modernes oferixen la possibilitat d'optimitzar les propietats de confiabilitat en habilitar la interacció dels nivells de hardware, firmware i software en el procés. Tot i això eixe punt no està resolt encara. Es necessiten avanços a tots els nivells en l'esmentada direcció per poder assolir els objectius d'una tolerància a fallades flexible, robusta, resilient i a baix cost. El treball ací presentat se centra en el nivell de hardware, amb la consideració de fons d'una potencial integració en una estratègia holística. Els esforços d'esta tesi s'han centrat en els següents aspectes: (i) la introducció de models de fallada addicionals requerits per a la representació adequada d'efectes físics que apareixen en les tecnologies de fabricació actuals, (ii) la provisió de ferramentes i mètodes per a la injecció eficient del models proposats i dels clàssics, (iii) l'anàlisi del mètode òptim per estudiar la robustesa de sistemes mitjançant l'ús d'injecció de fallades extensiva, i la posterior correlació amb capes de més alt nivell en un esforç per retallar el temps i cost de desenvolupament, (iv) la provisió de nous mètodes de detecció per cobrir els reptes plantejats pels models de fallades proposats, (v) la proposta d'estratègies de mitigació enfocades cap al tractament dels esmentats escenaris d'amenaça i (vi) la introducció d'una metodologia automatitzada de desplegament de diversos mecanismes de tolerància a fallades de forma robusta i sistemàtica. Els resultats de la present tesi constitueixen un conjunt de ferramentes i mètodes per ajudar el dissenyador de sistemes crítics en la seua tasca de desenvolupament de dissenys robustos, validats i a temps adaptats a la seua aplicació.Espinosa García, J. (2016). New Fault Detection, Mitigation and Injection Strategies for Current and Forthcoming Challenges of HW Embedded Designs [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/73146TESISCompendi

    Design and application of reconfigurable circuits and systems

    No full text
    Open Acces

    AR2T : implementing a truly SRAM-based FPGA on-line concurrent testing

    Get PDF
    The new partial and dynamic reconfigurable features offered by new generations of SRAM-based FPGAs may be used to improve the dependability of reconfigurable hardware platforms through the implementation of on-line concurrent testing / fault tolerance mechanisms. However, such mechanisms imply the existence of new test strategies that do not interfere with the current system functionality.The AR2T (Active Replication and Release for Testing) technique is a set of procedures that enables the implementation of a truly non-intrusive structural on-line concurrent testing approach, detecting and avoiding permanent faults and correcting errors due to transient faults. Experimental results prove the effectiveness of these solutions. In relation to a previous technique proposed by the authors as part of the DRAFT FPGA concurrent test methodology, AR2T extends the range of circuits that can be replicated, by introducing a small replication aid block

    Radiation Induced Fault Detection, Diagnosis, and Characterization of Field Programmable Gate Arrays

    Get PDF
    The development of Field Programmable Gate Arrays (FPGAs) has been a great achievement in the world of micro-electronics. One of these devices can be programmed to do just about anything, and replace the need for thousands of individual specialized devices. Despite their great versatility, FPGAs are still extremely vulnerable to radiation from cosmic waves in space and from adversaries on the ground. Extensive research has been conducted to examine how radiation disrupts different types of FPGAs. The results show, unfortunately, that the newer FPGAs with smaller technology are even more susceptible to radiation damage than the older ones. This research incorporates and enhances current methods of radiation detection. The design consists of 15 sensor networks that each have 29 sensors. The sensors are simple inverters, but they have the ability to detect flipped bits and delay errors caused by radiation. Analyzers process the outputs of each sensor to determine if the value agrees with what is expected. This information is fed to a reporter that creates an easy-to-read output that describes which network the fault is in, what type of fault is present, how many are in the network, how long they have been there, and the percent slowdown if it is a delay issue. Each network reports any fault data, to the computer screen in real time. This design does need some improvement, but once those improvements are made and tested, this system can be incorporated with FPGA reconfiguration methods that automatically place application logic away from failing errors of the FPGA. This system has great potential to become a great too in fault mitigation
    corecore