35 research outputs found

    Merging digital surface models sourced from multi-satellite imagery and their consequent application in automating 3D building modelling

    Get PDF
    Recently, especially within the last two decades, the demand for DSMs (Digital Surface Models) and 3D city models has increased dramatically. This has arisen due to the emergence of new applications beyond construction or analysis and consequently to a focus on accuracy and the cost. This thesis addresses two linked subjects: first improving the quality of the DSM by merging different source DSMs using a Bayesian approach; and second, extracting building footprints using approaches, including Bayesian approaches, and producing 3D models. Regarding the first topic, a probabilistic model has been generated based on the Bayesian approach in order to merge different source DSMs from different sensors. The Bayesian approach is specified to be ideal in the case when the data is limited and this can consequently be compensated by introducing the a priori. The implemented prior is based on the hypothesis that the building roof outlines are specified to be smooth, for that reason local entropy has been implemented in order to infer the a priori data. In addition to the a priori estimation, the quality of the DSMs is obtained by using field checkpoints from differential GNSS. The validation results have shown that the model was successfully able to improve the quality of the DSMs and improving some characteristics such as the roof surfaces, which consequently led to better representations. In addition to that, the developed model has been compared with the Maximum Likelihood model which showed similar quantitative statistical results and better qualitative results. Perhaps it is worth mentioning that, although the DSMs used in the merging have been produced using satellite images, the model can be applied on any type of DSM. The second topic is building footprint extraction based on using satellite imagery. An efficient flow-line for automatic building footprint extraction and 3D model construction, from both stereo panchromatic and multispectral satellite imagery was developed. This flow-line has been applied in an area of different building types, with both hipped and sloped roofs. The flow line consisted of multi stages. First, data preparation, digital orthoimagery and DSMs are created from WorldView-1. Pleiades imagery is used to create a vegetation mask. The orthoimagery then undergoes binary classification into ‘foreground’ (including buildings, shadows, open-water, roads and trees) and ‘background’ (including grass, bare soil, and clay). From the foreground class, shadows and open water are removed after creating a shadow mask by thresholding the same orthoimagery. Likewise roads have been removed, for the time being, after interactively creating a mask using the orthoimagery. NDVI processing of the Pleiades imagery has been used to create a mask for removing the trees. An ‘edge map’ is produced using Canny edge detection to define the exact building boundary outlines, from enhanced orthoimagery. A normalised digital surface model (nDSM) is produced from the original DSM using smoothing and subtracting techniques. Second, start Building Detection and Extraction. Buildings can be detected, in part, in the nDSM as isolated relatively elevated ‘blobs’. These nDSM ‘blobs’ are uniquely labelled to identify rudimentary buildings. Each ‘blob’ is paired with its corresponding ‘foreground’ area from the orthoimagery. Each ‘foreground’ area is used as an initial building boundary, which is then vectorised and simplified. Some unnecessary details in the ‘edge map’, particularly on the roofs of the buildings can be removed using mathematical morphology. Some building edges are not detected in the ‘edge map’ due to low contrast in some parts of the orthoimagery. The ‘edge map’ is subsequently further improved also using mathematical morphology, leading to the ‘modified edge map’. Finally, A Bayesian approach is used to find the most probable coordinates of the building footprints, based on the ‘modified edge map’. The proposal that is made for the footprint a priori data is based on the creating a PDF which assumes that the probable footprint angle at the corner is 90o and along the edge is 180o, with a less probable value given to the other angles such as 45o and 135o. The 3D model is constructed by extracting the elevation of the buildings from the DSM and combining it with the regularized building boundary. Validation, both quantitatively and qualitatively has shown that the developed process and associated algorithms have successfully been able to extract building footprints and create 3D models

    Panoptic Segmentation Meets Remote Sensing

    Full text link
    Panoptic segmentation combines instance and semantic predictions, allowing the detection of "things" and "stuff" simultaneously. Effectively approaching panoptic segmentation in remotely sensed data can be auspicious in many challenging problems since it allows continuous mapping and specific target counting. Several difficulties have prevented the growth of this task in remote sensing: (a) most algorithms are designed for traditional images, (b) image labelling must encompass "things" and "stuff" classes, and (c) the annotation format is complex. Thus, aiming to solve and increase the operability of panoptic segmentation in remote sensing, this study has five objectives: (1) create a novel data preparation pipeline for panoptic segmentation, (2) propose an annotation conversion software to generate panoptic annotations; (3) propose a novel dataset on urban areas, (4) modify the Detectron2 for the task, and (5) evaluate difficulties of this task in the urban setting. We used an aerial image with a 0,24-meter spatial resolution considering 14 classes. Our pipeline considers three image inputs, and the proposed software uses point shapefiles for creating samples in the COCO format. Our study generated 3,400 samples with 512x512 pixel dimensions. We used the Panoptic-FPN with two backbones (ResNet-50 and ResNet-101), and the model evaluation considered semantic instance and panoptic metrics. We obtained 93.9, 47.7, and 64.9 for the mean IoU, box AP, and PQ. Our study presents the first effective pipeline for panoptic segmentation and an extensive database for other researchers to use and deal with other data or related problems requiring a thorough scene understanding.Comment: 40 pages, 10 figures, submitted to journa

    Very High Resolution (VHR) Satellite Imagery: Processing and Applications

    Get PDF
    Recently, growing interest in the use of remote sensing imagery has appeared to provide synoptic maps of water quality parameters in coastal and inner water ecosystems;, monitoring of complex land ecosystems for biodiversity conservation; precision agriculture for the management of soils, crops, and pests; urban planning; disaster monitoring, etc. However, for these maps to achieve their full potential, it is important to engage in periodic monitoring and analysis of multi-temporal changes. In this context, very high resolution (VHR) satellite-based optical, infrared, and radar imaging instruments provide reliable information to implement spatially-based conservation actions. Moreover, they enable observations of parameters of our environment at greater broader spatial and finer temporal scales than those allowed through field observation alone. In this sense, recent very high resolution satellite technologies and image processing algorithms present the opportunity to develop quantitative techniques that have the potential to improve upon traditional techniques in terms of cost, mapping fidelity, and objectivity. Typical applications include multi-temporal classification, recognition and tracking of specific patterns, multisensor data fusion, analysis of land/marine ecosystem processes and environment monitoring, etc. This book aims to collect new developments, methodologies, and applications of very high resolution satellite data for remote sensing. The works selected provide to the research community the most recent advances on all aspects of VHR satellite remote sensing

    Introducing GEOBIA to landscape imageability assessment: a multi-temporal case study of the nature reserve “Kózki”, Poland

    Get PDF
    Geographic object-based image analysis (GEOBIA) is a primary remote sensing tool utilized in land-cover mapping and change detection. Land-cover patches are the primary data source for landscape metrics and ecological indicator calculations; however, their application to visual landscape character (VLC) indicators was little investigated to date. To bridge the knowledge gap between GEOBIA and VLC, this paper puts forward the theoretical concept of using viewpoint as a landscape imageability indicator into the practice of a multi-temporal land-cover case study and explains how to interpret the indicator. The study extends the application of GEOBIA to visual landscape indicator calculations. In doing so, eight different remote sensing imageries are the object of GEOBIA, starting from a historical aerial photograph (1957) and CORONA declassified scene (1965) to contemporary (2018) UAV-delivered imagery. The multi-temporal GEOBIA-delivered land-cover patches are utilized to find the minimal isovist set of viewpoints and to calculate three imageability indicators: the number, density, and spacing of viewpoints. The calculated indicator values, viewpoint rank, and spatial arrangements allow us to describe the scale, direction, rate, and reasons for VLC changes over the analyzed 60 years of landscape evolution. We found that the case study nature reserve (“Kózki”, Poland) landscape imageability transformed from visually impressive openness to imageability due to the impression of several landscape rooms enclosed by forest walls. Our results provide proof that the number, rank, and spatial arrangement of viewpoints constitute landscape imageability measured with the proposed indicators. Discussing the method’s technical limitations, we believe that our findings contribute to a better understanding of land-cover change impact on visual landscape structure dynamics and further VLC indicator development
    corecore