345 research outputs found

    HSMA_WOA: A hybrid novel Slime mould algorithm with whale optimization algorithm for tackling the image segmentation problem of chest X-ray images

    Get PDF
    Recently, a novel virus called COVID-19 has pervasive worldwide, starting from China and moving to all the world to eliminate a lot of persons. Many attempts have been experimented to identify the infection with COVID-19. The X-ray images were one of the attempts to detect the influence of COVID-19 on the infected persons from involving those experiments. According to the X-ray analysis, bilateral pulmonary parenchymal ground-glass and consolidative pulmonary opacities can be caused by COVID-19 — sometimes with a rounded morphology and a peripheral lung distribution. But unfortunately, the specification or if the person infected with COVID-19 or not is so hard under the X-ray images. X-ray images could be classified using the machine learning techniques to specify if the person infected severely, mild, or not infected. To improve the classification accuracy of the machine learning, the region of interest within the image that contains the features of COVID-19 must be extracted. This problem is called the image segmentation problem (ISP). Many techniques have been proposed to overcome ISP. The most commonly used technique due to its simplicity, speed, and accuracy are threshold-based segmentation. This paper proposes a new hybrid approach based on the thresholding technique to overcome ISP for COVID-19 chest X-ray images by integrating a novel meta-heuristic algorithm known as a slime mold algorithm (SMA) with the whale optimization algorithm to maximize the Kapur's entropy. The performance of integrated SMA has been evaluated on 12 chest X-ray images with threshold levels up to 30 and compared with five algorithms: Lshade algorithm, whale optimization algorithm (WOA), FireFly algorithm (FFA), Harris-hawks algorithm (HHA), salp swarm algorithms (SSA), and the standard SMA. The experimental results demonstrate that the proposed algorithm outperforms SMA under Kapur's entropy for all the metrics used and the standard SMA could perform better than the other algorithms in the comparison under all the metrics

    Remote sensing imagery segmentation: A hybrid approach

    Full text link
    In remote sensing imagery, segmentation techniques fail to encounter multiple regions of interest due to challenges such as dense features, low illumination, uncertainties, and noise. Consequently, exploiting vast and redundant information makes segmentation a difficult task. Existing multilevel thresholding techniques achieve low segmentation accuracy with high temporal difficulty due to the absence of spatial information. To mitigate this issue, this paper presents a new Rényi’s entropy and modified cuckoo search-based robust automatic multi-thresholding algorithm for remote sensing image analysis. In the proposed method, the modified cuckoo search algorithm is combined with Rényi’s entropy thresholding criteria to determine optimal thresholds. In the modified cuckoo search algorithm, the Lévy flight step size was modified to improve the convergence rate. An experimental analysis was conducted to validate the proposed method, both qualitatively and quantitatively against existing metaheuristic-based thresholding methods. To do this, the performance of the proposed method was intensively examined on high-dimensional remote sensing imageries. Moreover, numerical parameter analysis is presented to compare the segmented results against the gray-level co-occurrence matrix, Otsu energy curve, minimum cross entropy, and Rényi’s entropy-based thresholding. Experiments demonstrated that the proposed approach is effective and successful in attaining accurate segmentation with low time complexity

    Microcalcifications Detection Using Image And Signal Processing Techniques For Early Detection Of Breast Cancer

    Get PDF
    Breast cancer has transformed into a severe health problem around the world. Early diagnosis is an important factor to survive this disease. The earliest detection signs of potential breast cancer that is distinguishable by current screening techniques are the presence of microcalcifications (MCs). MCs are small crystals of calcium apatite and their normal size ranges from 0.1mm to 0.5mm single crystals to groups up to a few centimeters in diameter. They are the first indication of breast cancer in more than 40% of all breast cancer cases, making their diagnosis critical. This dissertation proposes several segmentation techniques for detecting and isolating point microcalcifications: Otsu’s Method, Balanced Histogram Thresholding, Iterative Method, Maximum Entropy, Moment Preserving, and Genetic Algorithm. These methods were applied to medical images to detect microcalcifications. In this dissertation, results from the application of these techniques are presented and their efficiency for early detection of breast cancer is explained. This dissertation also explains theories and algorithms related to these techniques that can be used for breast cancer detection

    A novel equilibrium optimization algorithm for multi-thresholding image segmentation problems

    Get PDF
    Image segmentation is considered a crucial step required for image analysis and research. Many techniques have been proposed to resolve the existing problems and improve the quality of research, such as region-based, threshold-based, edge-based, and feature-based clustering in the literature. The researchers have moved toward using the threshold technique due to the ease of use for image segmentation. To find the optimal threshold value for a grayscale image, we improved and used a novel meta-heuristic equilibrium algorithm to resolve this scientific problem. Additionally, our improved algorithm has the ability to enhance the accuracy of the segmented image for research analysis with a significant threshold level. The performance of our algorithm is compared with seven other algorithms like whale optimization algorithm, bat algorithm, sine–cosine algorithm, salp swarm algorithm, Harris hawks algorithm, crow search algorithm, and particle swarm optimization. Based on a set of well-known test images taken from Berkeley Segmentation Dataset, the performance evaluation of our algorithm and well-known algorithms described above has been conducted and compared. According to the independent results and analysis of each algorithm, our algorithm can outperform all other algorithms in fitness values, peak signal-to-noise ratio metric, structured similarity index metric, maximum absolute error, and signal-to-noise ratio. However, our algorithm cannot outperform some algorithms in standard deviation values and central processing unit time with the large threshold levels observed

    A comprehensive review of fruit and vegetable classification techniques

    Get PDF
    Recent advancements in computer vision have enabled wide-ranging applications in every field of life. One such application area is fresh produce classification, but the classification of fruit and vegetable has proven to be a complex problem and needs to be further developed. Fruit and vegetable classification presents significant challenges due to interclass similarities and irregular intraclass characteristics. Selection of appropriate data acquisition sensors and feature representation approach is also crucial due to the huge diversity of the field. Fruit and vegetable classification methods have been developed for quality assessment and robotic harvesting but the current state-of-the-art has been developed for limited classes and small datasets. The problem is of a multi-dimensional nature and offers significantly hyperdimensional features, which is one of the major challenges with current machine learning approaches. Substantial research has been conducted for the design and analysis of classifiers for hyperdimensional features which require significant computational power to optimise with such features. In recent years numerous machine learning techniques for example, Support Vector Machine (SVM), K-Nearest Neighbour (KNN), Decision Trees, Artificial Neural Networks (ANN) and Convolutional Neural Networks (CNN) have been exploited with many different feature description methods for fruit and vegetable classification in many real-life applications. This paper presents a critical comparison of different state-of-the-art computer vision methods proposed by researchers for classifying fruit and vegetable

    Document clustering based on firefly algorithm

    Get PDF
    Document clustering is widely used in Information Retrieval however, existing clustering techniques suffer from local optima problem in determining the k number of clusters.Various efforts have been put to address such drawback and this includes the utilization of swarm-based algorithms such as particle swarm optimization and Ant Colony Optimization.This study explores the adaptation of another swarm algorithm which is the Firefly Algorithm (FA) in text clustering.We present two variants of FA; Weight- based Firefly Algorithm (WFA) and Weight-based Firefly Algorithm II (WFAII).The difference between the two algorithms is that the WFAII, includes a more restricted condition in determining members of a cluster.The proposed FA methods are later evaluated using the 20Newsgroups dataset.Experimental results on the quality of clustering between the two FA variants are presented and are later compared against the one produced by particle swarm optimization, K-means and the hybrid of FA and -K-means. The obtained results demonstrated that the WFAII outperformed the WFA, PSO, K-means and FA-Kmeans. This result indicates that a better clustering can be obtained once the exploitation of a search solution is improved

    A Comparative Study of Improved Artificial Bee Colony Algorithms Applied to Multilevel Image Thresholding

    Get PDF
    Multilevel thresholding is a highly useful tool for the application of image segmentation. Otsu’s method, a common exhaustive search for finding optimal thresholds, involves a high computational cost. There has been a lot of recent research into various meta-heuristic searches in the area of optimization research. This paper analyses and discusses using a family of artificial bee colony algorithms, namely, the standard ABC, ABC/best/1, ABC/best/2, IABC/best/1, IABC/rand/1, and CABC, and some particle swarm optimization-based algorithms for searching multilevel thresholding. The strategy for an onlooker bee to select an employee bee was modified to serve our purposes. The metric measures, which are used to compare the algorithms, are the maximum number of function calls, successful rate, and successful performance. The ranking was performed by Friedman ranks. The experimental results showed that IABC/best/1 outperformed the other techniques when all of them were applied to multilevel image thresholding. Furthermore, the experiments confirmed that IABC/best/1 is a simple, general, and high performance algorithm

    Soft computing applied to optimization, computer vision and medicine

    Get PDF
    Artificial intelligence has permeated almost every area of life in modern society, and its significance continues to grow. As a result, in recent years, Soft Computing has emerged as a powerful set of methodologies that propose innovative and robust solutions to a variety of complex problems. Soft Computing methods, because of their broad range of application, have the potential to significantly improve human living conditions. The motivation for the present research emerged from this background and possibility. This research aims to accomplish two main objectives: On the one hand, it endeavors to bridge the gap between Soft Computing techniques and their application to intricate problems. On the other hand, it explores the hypothetical benefits of Soft Computing methodologies as novel effective tools for such problems. This thesis synthesizes the results of extensive research on Soft Computing methods and their applications to optimization, Computer Vision, and medicine. This work is composed of several individual projects, which employ classical and new optimization algorithms. The manuscript presented here intends to provide an overview of the different aspects of Soft Computing methods in order to enable the reader to reach a global understanding of the field. Therefore, this document is assembled as a monograph that summarizes the outcomes of these projects across 12 chapters. The chapters are structured so that they can be read independently. The key focus of this work is the application and design of Soft Computing approaches for solving problems in the following: Block Matching, Pattern Detection, Thresholding, Corner Detection, Template Matching, Circle Detection, Color Segmentation, Leukocyte Detection, and Breast Thermogram Analysis. One of the outcomes presented in this thesis involves the development of two evolutionary approaches for global optimization. These were tested over complex benchmark datasets and showed promising results, thus opening the debate for future applications. Moreover, the applications for Computer Vision and medicine presented in this work have highlighted the utility of different Soft Computing methodologies in the solution of problems in such subjects. A milestone in this area is the translation of the Computer Vision and medical issues into optimization problems. Additionally, this work also strives to provide tools for combating public health issues by expanding the concepts to automated detection and diagnosis aid for pathologies such as Leukemia and breast cancer. The application of Soft Computing techniques in this field has attracted great interest worldwide due to the exponential growth of these diseases. Lastly, the use of Fuzzy Logic, Artificial Neural Networks, and Expert Systems in many everyday domestic appliances, such as washing machines, cookers, and refrigerators is now a reality. Many other industrial and commercial applications of Soft Computing have also been integrated into everyday use, and this is expected to increase within the next decade. Therefore, the research conducted here contributes an important piece for expanding these developments. The applications presented in this work are intended to serve as technological tools that can then be used in the development of new devices
    • …
    corecore