4,508 research outputs found

    M\"obius Invariants of Shapes and Images

    Full text link
    Identifying when different images are of the same object despite changes caused by imaging technologies, or processes such as growth, has many applications in fields such as computer vision and biological image analysis. One approach to this problem is to identify the group of possible transformations of the object and to find invariants to the action of that group, meaning that the object has the same values of the invariants despite the action of the group. In this paper we study the invariants of planar shapes and images under the M\"obius group PSL(2,C)\mathrm{PSL}(2,\mathbb{C}), which arises in the conformal camera model of vision and may also correspond to neurological aspects of vision, such as grouping of lines and circles. We survey properties of invariants that are important in applications, and the known M\"obius invariants, and then develop an algorithm by which shapes can be recognised that is M\"obius- and reparametrization-invariant, numerically stable, and robust to noise. We demonstrate the efficacy of this new invariant approach on sets of curves, and then develop a M\"obius-invariant signature of grey-scale images

    Object detection and activity recognition in digital image and video libraries

    Get PDF
    This thesis is a comprehensive study of object-based image and video retrieval, specifically for car and human detection and activity recognition purposes. The thesis focuses on the problem of connecting low level features to high level semantics by developing relational object and activity presentations. With the rapid growth of multimedia information in forms of digital image and video libraries, there is an increasing need for intelligent database management tools. The traditional text based query systems based on manual annotation process are impractical for today\u27s large libraries requiring an efficient information retrieval system. For this purpose, a hierarchical information retrieval system is proposed where shape, color and motion characteristics of objects of interest are captured in compressed and uncompressed domains. The proposed retrieval method provides object detection and activity recognition at different resolution levels from low complexity to low false rates. The thesis first examines extraction of low level features from images and videos using intensity, color and motion of pixels and blocks. Local consistency based on these features and geometrical characteristics of the regions is used to group object parts. The problem of managing the segmentation process is solved by a new approach that uses object based knowledge in order to group the regions according to a global consistency. A new model-based segmentation algorithm is introduced that uses a feedback from relational representation of the object. The selected unary and binary attributes are further extended for application specific algorithms. Object detection is achieved by matching the relational graphs of objects with the reference model. The major advantages of the algorithm can be summarized as improving the object extraction by reducing the dependence on the low level segmentation process and combining the boundary and region properties. The thesis then addresses the problem of object detection and activity recognition in compressed domain in order to reduce computational complexity. New algorithms for object detection and activity recognition in JPEG images and MPEG videos are developed. It is shown that significant information can be obtained from the compressed domain in order to connect to high level semantics. Since our aim is to retrieve information from images and videos compressed using standard algorithms such as JPEG and MPEG, our approach differentiates from previous compressed domain object detection techniques where the compression algorithms are governed by characteristics of object of interest to be retrieved. An algorithm is developed using the principal component analysis of MPEG motion vectors to detect the human activities; namely, walking, running, and kicking. Object detection in JPEG compressed still images and MPEG I frames is achieved by using DC-DCT coefficients of the luminance and chrominance values in the graph based object detection algorithm. The thesis finally addresses the problem of object detection in lower resolution and monochrome images. Specifically, it is demonstrated that the structural information of human silhouettes can be captured from AC-DCT coefficients

    On the non-local geometry of turbulence

    Get PDF
    A multi-scale methodology for the study of the non-local geometry of eddy structures in turbulence is developed. Starting from a given three-dimensional field, this consists of three main steps: extraction, characterization and classification of structures. The extraction step is done in two stages. First, a multi-scale decomposition based on the curvelet transform is applied to the full three-dimensional field, resulting in a finite set of component three-dimensional fields, one per scale. Second, by iso-contouring each component field at one or more iso-contour levels, a set of closed iso-surfaces is obtained that represents the structures at that scale. The characterization stage is based on the joint probability density function (p.d.f.), in terms of area coverage on each individual iso-surface, of two differential-geometry properties, the shape index and curvedness, plus the stretching parameter, a dimensionless global invariant of the surface. Taken together, this defines the geometrical signature of the iso-surface. The classification step is based on the construction of a finite set of parameters, obtained from algebraic functions of moments of the joint p.d.f. of each structure, that specify its location as a point in a multi-dimensional ‘feature space’. At each scale the set of points in feature space represents all structures at that scale, for the specified iso-contour value. This then allows the application, to the set, of clustering techniques that search for groups of structures with a common geometry. Results are presented of a first application of this technique to a passive scalar field obtained from 5123 direct numerical simulation of scalar mixing by forced, isotropic turbulence (Reλ = 265). These show transition, with decreasing scale, from blob-like structures in the larger scales to blob- and tube-like structures with small or moderate stretching in the inertial range of scales, and then toward tube and, predominantly, sheet-like structures with high level of stretching in the dissipation range of scales. Implications of these results for the dynamical behaviour of passive scalar stirring and mixing by turbulence are discussed

    Three-dimensional morphanalysis of the face.

    Get PDF
    The aim of the work reported in this thesis was to determine the extent to which orthogonal two-dimensional morphanalytic (universally relatable) craniofacial imaging methods can be extended into the realm of computer-based three-dimensional imaging. New methods are presented for capturing universally relatable laser-video surface data, for inter-relating facial surface scans and for constructing probabilistic facial averages. Universally relatable surface scans are captured using the fixed relations principle com- bined with a new laser-video scanner calibration method. Inter- subject comparison of facial surface scans is achieved using inter- active feature labelling and warping methods. These methods have been extended to groups of subjects to allow the construction of three-dimensional probabilistic facial averages. The potential of universally relatable facial surface data for applications such as growth studies and patient assessment is demonstrated. In addition, new methods for scattered data interpolation, for controlling overlap in image warping and a fast, high-resolution method for simulating craniofacial surgery are described. The results demonstrate that it is not only possible to extend universally relatable imaging into three dimensions, but that the extension also enhances the established methods, providing a wide range of new applications

    DIGITAL INPAINTING ALGORITHMS AND EVALUATION

    Get PDF
    Digital inpainting is the technique of filling in the missing regions of an image or a video using information from surrounding area. This technique has found widespread use in applications such as restoration, error recovery, multimedia editing, and video privacy protection. This dissertation addresses three significant challenges associated with the existing and emerging inpainting algorithms and applications. The three key areas of impact are 1) Structure completion for image inpainting algorithms, 2) Fast and efficient object based video inpainting framework and 3) Perceptual evaluation of large area image inpainting algorithms. One of the main approach of existing image inpainting algorithms in completing the missing information is to follow a two stage process. A structure completion step, to complete the boundaries of regions in the hole area, followed by texture completion process using advanced texture synthesis methods. While the texture synthesis stage is important, it can be argued that structure completion aspect is a vital component in improving the perceptual image inpainting quality. To this end, we introduce a global structure completion algorithm for completion of missing boundaries using symmetry as the key feature. While existing methods for symmetry completion require a-priori information, our method takes a non-parametric approach by utilizing the invariant nature of curvature to complete missing boundaries. Turning our attention from image to video inpainting, we readily observe that existing video inpainting techniques have evolved as an extension of image inpainting techniques. As a result, they suffer from various shortcoming including, among others, inability to handle large missing spatio-temporal regions, significantly slow execution time making it impractical for interactive use and presence of temporal and spatial artifacts. To address these major challenges, we propose a fundamentally different method based on object based framework for improving the performance of video inpainting algorithms. We introduce a modular inpainting scheme in which we first segment the video into constituent objects by using acquired background models followed by inpainting of static background regions and dynamic foreground regions. For static background region inpainting, we use a simple background replacement and occasional image inpainting. To inpaint dynamic moving foreground regions, we introduce a novel sliding-window based dissimilarity measure in a dynamic programming framework. This technique can effectively inpaint large regions of occlusions, inpaint objects that are completely missing for several frames, change in size and pose and has minimal blurring and motion artifacts. Finally we direct our focus on experimental studies related to perceptual quality evaluation of large area image inpainting algorithms. The perceptual quality of large area inpainting technique is inherently a subjective process and yet no previous research has been carried out by taking the subjective nature of the Human Visual System (HVS). We perform subjective experiments using eye-tracking device involving 24 subjects to analyze the effect of inpainting on human gaze. We experimentally show that the presence of inpainting artifacts directly impacts the gaze of an unbiased observer and this in effect has a direct bearing on the subjective rating of the observer. Specifically, we show that the gaze energy in the hole regions of an inpainted image show marked deviations from normal behavior when the inpainting artifacts are readily apparent

    Using contour information and segmentation for object registration, modeling and retrieval

    Get PDF
    This thesis considers different aspects of the utilization of contour information and syntactic and semantic image segmentation for object registration, modeling and retrieval in the context of content-based indexing and retrieval in large collections of images. Target applications include retrieval in collections of closed silhouettes, holistic w ord recognition in handwritten historical manuscripts and shape registration. Also, the thesis explores the feasibility of contour-based syntactic features for improving the correspondence of the output of bottom-up segmentation to semantic objects present in the scene and discusses the feasibility of different strategies for image analysis utilizing contour information, e.g. segmentation driven by visual features versus segmentation driven by shape models or semi-automatic in selected application scenarios. There are three contributions in this thesis. The first contribution considers structure analysis based on the shape and spatial configuration of image regions (socalled syntactic visual features) and their utilization for automatic image segmentation. The second contribution is the study of novel shape features, matching algorithms and similarity measures. Various applications of the proposed solutions are presented throughout the thesis providing the basis for the third contribution which is a discussion of the feasibility of different recognition strategies utilizing contour information. In each case, the performance and generality of the proposed approach has been analyzed based on extensive rigorous experimentation using as large as possible test collections
    corecore