22 research outputs found

    Automatic Pulmonary Nodule Detection in CT Scans Using Convolutional Neural Networks Based on Maximum Intensity Projection

    Get PDF
    Accurate pulmonary nodule detection is a crucial step in lung cancer screening. Computer-aided detection (CAD) systems are not routinely used by radiologists for pulmonary nodule detection in clinical practice despite their potential benefits. Maximum intensity projection (MIP) images improve the detection of pulmonary nodules in radiological evaluation with computed tomography (CT) scans. Inspired by the clinical methodology of radiologists, we aim to explore the feasibility of applying MIP images to improve the effectiveness of automatic lung nodule detection using convolutional neural networks (CNNs). We propose a CNN-based approach that takes MIP images of different slab thicknesses (5 mm, 10 mm, 15 mm) and 1 mm axial section slices as input. Such an approach augments the two-dimensional (2-D) CT slice images with more representative spatial information that helps discriminate nodules from vessels through their morphologies. Our proposed method achieves sensitivity of 92.67% with 1 false positive per scan and sensitivity of 94.19% with 2 false positives per scan for lung nodule detection on 888 scans in the LIDC-IDRI dataset. The use of thick MIP images helps the detection of small pulmonary nodules (3 mm-10 mm) and results in fewer false positives. Experimental results show that utilizing MIP images can increase the sensitivity and lower the number of false positives, which demonstrates the effectiveness and significance of the proposed MIP-based CNNs framework for automatic pulmonary nodule detection in CT scans. The proposed method also shows the potential that CNNs could gain benefits for nodule detection by combining the clinical procedure.Comment: Submitted to IEEE TM

    Enhancing and Detecting the Lung Cancer using Deep Learning

    Get PDF
    In the medical sector cancer detection became the most challenging task. Here a lot of research is carried out by the scientific fraternity. Most medical issues are getting better answers because to modern technology like artificial intelligence and models based on neural networks. In this the first half part of the paper discuss about the CNN model by using regularization and augmentation techniques for getting the better accuracy result. The second part delas with developing and demonstrating an application for detecting the lung cancer using the deep learning (DL). Here the application is built using flask which works based on the Python programming language. This acts as an application programming interface (API) between the cloud server and the proposed application mod el. Heroku cloud platform was used as a service base to launch the software and to use the application with highest reliability. The internal functionality of the anticipated model is created on convolutional neural network (CNN) architecture with ten layers to obtain high accuracy. The model demonstrated a considerable training and validation accuracy of 94% and 92% respectively

    Comparative Analysis of CNN Regularisation and Augmentation Techniques with Ten Layer Deep Learning Model To Detect Lung Cancer

    Get PDF
    In the medical sector cancer detection became the most challenging task. Here a lot of research is carried out by the scientific fraternity. Most medical issues are getting better answers because to modern technology like artificial intelligence and models based on neural networks. In this the first half part of the paper discuss about the CNN model by using regularization and augmentation techniques for getting the better accuracy result. The second part delas with developing and demonstrating an application for detecting the lung cancer using the deep learning (DL). Here the application is built using flask which works based on the Python programming language. This acts as an application programming interface (API) between the cloud server and the proposed application model. Heroku cloud platform was used as a service base to launch the software and to use the application with highest reliability. The internal functionality of the proposed model is based on convolutional neural network (CNN) architecture with ten layers to obtain high accuracy. The model demonstrated a considerable training and validation accuracy of 94% and 92% respectively

    An Innovative Method for Lung Cancer Identification Using Machine Learning Algorithms

    Get PDF
    Biological community and the healthcare sector have greatly benefited from technological advancements in biomedical imaging.  These advantages include early cancer identification and categorization, prognostication of patients' clinical outcomes following cancer surgery, and prognostication of survival for various cancer types. Medical professionals must spend a lot of time and effort gathering, analyzing, and evaluating enormous amounts of wellness data, such as scan results. Although radiologists spend a lot of time carefully reviewing several scans, tiny nodule diagnosis is incredibly prone to inaccuracy. Low dose computed tomography (LDCT) scans are used to categorize benign (Noncancerous) and malignant (Cancerous) nodules in order to study the issue of lung cancer (LC) diagnosis. Machine learning (ML), Deep learning (DL), and Artificial intelligence (AI) applications aid in the rapid identification of a number of infectious and malignant diseases, including lung cancer, using cutting-edge convolutional neural network (CNN) and Deep CNN architectures, we propose three unique detection models in this study: SEQUENTIAL 1 (Model-1), SEQUENTIAL 2 (Model-2), and transfer learning model Visual Geometry Group, VGG 16 (Model-3). The best accuracy model and methodology that are proposedas an effective and non-invasive diagnostic tool, outperforms other models trained with similar labels using lung CT scans to identify malignant nodules. Using a standard LIDC-IDRI data set that is freely available, the deep learning models are verified. The results of the experiment show a decrease in false positives while an increase in accuracy

    Model-based Segmentation and Deep Learning for Lung Cancer

    Get PDF
    Lung cancer is one of the life taking disease and causes more deaths worldwide. Early detection and treatment is necessary to save life. It is very difficult for doctors to interpret and identify diseases using imaging modalities alone. Therefore computer aided diagnosis can assist doctors for the early detection of cancer very accurately. In the proposed work, optimized deformable models and deep learning techniques are applied for the detection and classification of lung cancer. This method involves pre-processing, lung lobe segmentation, lung cancer segmentation, Data augmentation and lung cancer classification. The median filtering is considered for pre-processing and the Bayesian fuzzy clustering is applied for segmenting the lung lobes. The lung cancer segmentation is carried out using Water Cycle Sea Lion Optimization (WSLnO) based deformable model. The data augmentation process is used to augment the size of segmented region in order to perform better classification. The lung cancer classification is done effectively using Shepard Convolutional Neural Network (ShCNN), which is trained by WSLnO algorithm. The proposed WSLnO algorithm is designed by incorporating Water cycle algorithm (WCA) and Sea Lion Optimization (SLnO) algorithm. The performance of the proposed technique is analyzed with various performance metrics and attained the better results in terms of accuracy, sensitivity, specificity and average segmentation accuracy of 0.9303, 0.9123, 0.9133 and 0.9091 respectively

    Performance of a deep learning-based lung nodule detection system as an alternative reader in a Chinese lung cancer screening program

    Get PDF
    Objective: To evaluate the performance of a deep learning-based computer-aided detection (DL-CAD) system in a Chinese low-dose CT (LDCT) lung cancer screening program. Materials and methods: One-hundred-and-eighty individuals with a lung nodule on their baseline LDCT lung cancer screening scan were randomly mixed with screenees without nodules in a 1:1 ratio (total: 360 individuals). All scans were assessed by double reading and subsequently processed by an academic DL-CAD system. The findings of double reading and the DL-CAD system were then evaluated by two senior radiologists to derive the reference standard. The detection performance was evaluated by the Free Response Operating Characteristic curve, sensitivity and false-positive (FP) rate. The senior radiologists categorized nodules according to nodule diameter, type (solid, part-solid, non-solid) and Lung-RADS. Results: The reference standard consisted of 262 nodules ≥ 4 mm in 196 individuals; 359 findings were considered false positives. The DL-CAD system achieved a sensitivity of 90.1% with 1.0 FP/scan for detection of lung nodules regardless of size or type, whereas double reading had a sensitivity of 76.0% with 0.04 FP/scan (P = 0.001). The sensitivity for detection of nodules ≥ 4 - ≤ 6 mm was significantly higher with DL-CAD than with double reading (86.3% vs. 58.9% respectively; P = 0.001). Sixty-three nodules were only identified by the DL-CAD system, and 27 nodules only found by double reading. The DL-CAD system reached similar performance compared to double reading in Lung-RADS 3 (94.3% vs. 90.0%, P = 0.549) and Lung-RADS 4 nodules (100.0% vs. 97.0%, P = 1.000), but showed a higher sensitivity in Lung-RADS 2 (86.2% vs. 65.4%, P < 0.001). Conclusions: The DL-CAD system can accurately detect pulmonary nodules on LDCT, with an acceptable false-positive rate of 1 nodule per scan and has higher detection performance than double reading. This DL-CAD system may assist radiologists in nodule detection in LDCT lung cancer screening

    Cloud-based automated clinical decision support system for detection and diagnosis of lung cancer in chest CT

    Get PDF
    Lung cancer is a major cause for cancer-related deaths. The detection of pulmonary cancer in the early stages can highly increase survival rate. Manual delineation of lung nodules by radiologists is a tedious task. We developed a novel computer-aided decision support system for lung nodule detection based on a 3D Deep Convolutional Neural Network (3DDCNN) for assisting the radiologists. Our decision support system provides a second opinion to the radiologists in lung cancer diagnostic decision making. In order to leverage 3-dimensional information from Computed Tomography (CT) scans, we applied median intensity projection and multi-Region Proposal Network (mRPN) for automatic selection of potential regionof-interests. Our Computer Aided Diagnosis (CAD) system has been trained and validated using LUNA16, ANODE09, and LIDC-IDR datasets; the experiments demonstrate the superior performance of our system, attaining sensitivity, specificity, AUROC, accuracy, of 98.4%, 92%, 96% and 98.51% with 2.1 FPs per scan. We integrated cloud computing, trained and validated our Cloud-Based 3DDCNN on the datasets provided by Shanghai Sixth People’s Hospital, as well as LUNA16, ANODE09, and LIDC-IDR. Our system outperformed the state-of-the-art systems and obtained an impressive 98.7% sensitivity at 1.97 FPs per scan. This shows the potentials of deep learning, in combination with cloud computing, for accurate and efficient lung nodule detection via CT imaging, which could help doctors and radiologists in treating lung cancer patients

    Segmentation and classification of lung nodules from Thoracic CT scans : methods based on dictionary learning and deep convolutional neural networks.

    Get PDF
    Lung cancer is a leading cause of cancer death in the world. Key to survival of patients is early diagnosis. Studies have demonstrated that screening high risk patients with Low-dose Computed Tomography (CT) is invaluable for reducing morbidity and mortality. Computer Aided Diagnosis (CADx) systems can assist radiologists and care providers in reading and analyzing lung CT images to segment, classify, and keep track of nodules for signs of cancer. In this thesis, we propose a CADx system for this purpose. To predict lung nodule malignancy, we propose a new deep learning framework that combines Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN) to learn best in-plane and inter-slice visual features for diagnostic nodule classification. Since a nodule\u27s volumetric growth and shape variation over a period of time may reveal information regarding the malignancy of nodule, separately, a dictionary learning based approach is proposed to segment the nodule\u27s shape at two time points from two scans, one year apart. The output of a CNN classifier trained to learn visual appearance of malignant nodules is then combined with the derived measures of shape change and volumetric growth in assigning a probability of malignancy to the nodule. Due to the limited number of available CT scans of benign and malignant nodules in the image database from the National Lung Screening Trial (NLST), we chose to initially train a deep neural network on the larger LUNA16 Challenge database which was built for the purpose of eliminating false positives from detected nodules in thoracic CT scans. Discriminative features that were learned in this application were transferred to predict malignancy. The algorithm for segmenting nodule shapes in serial CT scans utilizes a sparse combination of training shapes (SCoTS). This algorithm captures a sparse representation of a shape in input data through a linear span of previously delineated shapes in a training repository. The model updates shape prior over level set iterations and captures variabilities in shapes by a sparse combination of the training data. The level set evolution is therefore driven by a data term as well as a term capturing valid prior shapes. During evolution, the shape prior influence is adjusted based on shape reconstruction, with the assigned weight determined from the degree of sparsity of the representation. The discriminative nature of sparse representation, affords us the opportunity to compare nodules\u27 variations in consecutive time points and to predict malignancy. Experimental validations of the proposed segmentation algorithm have been demonstrated on 542 3-D lung nodule data from the LIDC-IDRI database which includes radiologist delineated nodule boundaries. The effectiveness of the proposed deep learning and dictionary learning architectures for malignancy prediction have been demonstrated on CT data from 370 biopsied subjects collected from the NLST database. Each subject in this database had at least two serial CT scans at two separate time points one year apart. The proposed RNN CAD system achieved an ROC Area Under the Curve (AUC) of 0.87, when validated on CT data from nodules at second sequential time point and 0.83 based on dictionary learning method; however, when nodule shape change and appearance were combined, the classifier performance improved to AUC=0.89

    Computer-aided detection of lung nodules: A review

    Get PDF
    We present an in-depth review and analysis of salient methods for computer-aided detection of lung nodules. We evaluate the current methods for detecting lung nodules using literature searches with selection criteria based on validation dataset types, nodule sizes, numbers of cases, types of nodules, extracted features in traditional feature-based classifiers, sensitivity, and false positives (FP)/scans. Our review shows that current detection systems are often optimized for particular datasets and can detect only one or two types of nodules. We conclude that, in addition to achieving high sensitivity and reduced FP/scans, strategies for detecting lung nodules must detect a variety of nodules with high precision to improve the performances of the radiologists. To the best of our knowledge, ours is the first review of the effectiveness of feature extraction using traditional feature-based classifiers. Moreover, we discuss deep-learning methods in detail and conclude that features must be appropriately selected to improve the overall accuracy of the system. We present an analysis of current schemes and highlight constraints and future research areas
    corecore