445 research outputs found

    Identification of weakly coupled multiphysics problems. Application to the inverse problem of electrocardiography

    Get PDF
    This work addresses the inverse problem of electrocardiography from a new perspective, by combining electrical and mechanical measurements. Our strategy relies on the defini-tion of a model of the electromechanical contraction which is registered on ECG data but also on measured mechanical displacements of the heart tissue typically extracted from medical images. In this respect, we establish in this work the convergence of a sequential estimator which combines for such coupled problems various state of the art sequential data assimilation methods in a unified consistent and efficient framework. Indeed we ag-gregate a Luenberger observer for the mechanical state and a Reduced Order Unscented Kalman Filter applied on the parameters to be identified and a POD projection of the electrical state. Then using synthetic data we show the benefits of our approach for the estimation of the electrical state of the ventricles along the heart beat compared with more classical strategies which only consider an electrophysiological model with ECG measurements. Our numerical results actually show that the mechanical measurements improve the identifiability of the electrical problem allowing to reconstruct the electrical state of the coupled system more precisely. Therefore, this work is intended to be a first proof of concept, with theoretical justifications and numerical investigations, of the ad-vantage of using available multi-modal observations for the estimation and identification of an electromechanical model of the heart

    Dynamic finite-strain modelling of the human left ventricle in health and disease using an immersed boundary-finite element method

    Get PDF
    Detailed models of the biomechanics of the heart are important both for developing improved interventions for patients with heart disease and also for patient risk stratification and treatment planning. For instance, stress distributions in the heart affect cardiac remodelling, but such distributions are not presently accessible in patients. Biomechanical models of the heart offer detailed three-dimensional deformation, stress and strain fields that can supplement conventional clinical data. In this work, we introduce dynamic computational models of the human left ventricle (LV) that are derived from clinical imaging data obtained from a healthy subject and from a patient with a myocardial infarction (MI). Both models incorporate a detailed invariant-based orthotropic description of the passive elasticity of the ventricular myocardium along with a detailed biophysical model of active tension generation in the ventricular muscle. These constitutive models are employed within a dynamic simulation framework that accounts for the inertia of the ventricular muscle and the blood that is based on an immersed boundary (IB) method with a finite element description of the structural mechanics. The geometry of the models is based on data obtained non-invasively by cardiac magnetic resonance (CMR). CMR imaging data are also used to estimate the parameters of the passive and active constitutive models, which are determined so that the simulated end-diastolic and end-systolic volumes agree with the corresponding volumes determined from the CMR imaging studies. Using these models, we simulate LV dynamics from end-diastole to end-systole. The results of our simulations are shown to be in good agreement with subject-specific CMR-derived strain measurements and also with earlier clinical studies on human LV strain distributions

    Personalized noninvasive imaging of volumetric cardiac electrophysiology

    Get PDF
    Three-dimensionally distributed electrical functioning is the trigger of mechanical contraction of the heart. Disturbance of this electrical flow is known to predispose to mechanical catastrophe but, due to its amenability to certain intervention techniques, a detailed understanding of subject-specific cardiac electrophysiological conditions is of great medical interest. In current clinical practice, body surface potential recording is the standard tool for diagnosing cardiac electrical dysfunctions. However, successful treatments normally require invasive catheter mapping for a more detailed observation of these dysfunctions. In this dissertation, we take a system approach to pursue personalized noninvasive imaging of volumetric cardiac electrophysiology. Under the guidance of existing scientific knowledge of the cardiac electrophysiological system, we extract the subject specific cardiac electrical information from noninvasive body surface potential mapping and tomographic imaging data of individual subjects. In this way, a priori knowledge of system physiology leads the physiologically meaningful interpretation of personal data; at the same time, subject-specific information contained in the data identifies parameters in individual systems that differ from prior knowledge. Based on this perspective, we develop a physiological model-constrained statistical framework for the quantitative reconstruction of the electrical dynamics and inherent electrophysiological property of each individual cardiac system. To accomplish this, we first develop a coupled meshfree-BE (boundary element) modeling approach to represent existing physiological knowledge of the cardiac electrophysiological system on personalized heart-torso structures. Through a state space system approach and sequential data assimilation techniques, we then develop statistical model-data coupling algorithms for quantitative reconstruction of volumetric transmembrane potential dynamics and tissue property of 3D myocardium from body surface potential recoding of individual subjects. We also introduce a data integration component to build personalized cardiac electrophysiology by fusing tomographic image and BSP sequence of the same subject. In addition, we develop a computational reduction strategy that improves the efficiency and stability of the framework. Phantom experiments and real-data human studies are performed for validating each of the framework’s major components. These experiments demonstrate the potential of our framework in providing quantitative understanding of volumetric cardiac electrophysiology for individual subjects and in identifying latent threats in individual’s heart. This may aid in personalized diagnose, treatment planning, and fundamentally, prevention of fatal cardiac arrhythmia

    Cardiac displacement tracking with data assimilation combining a biomechanical model and an automatic contour detection

    Get PDF
    International audienceData assimilation in computational models represents an essential step in building patient-specific simulations. This work aims at circumventing one major bottleneck in the practical use of data assimilation strategies in cardiac applications, namely, the difficulty of formulating and effectively computing adequate data-fitting term for cardiac imaging such as cine MRI. We here provide a proof-of-concept study of data assimilation based on automatic contour detection. The tissue motion simulated by the data assimilation framework is then assessed with displacements extracted from tagged MRI in six subjects, and the results illustrate the performance of the proposed method, including for circumferential displacements, which are not well extracted from cine MRI alone

    Fundamental principles of data assimilation underlying the Verdandi library: applications to biophysical model personalization within euHeart

    Get PDF
    International audienceWe present the fundamental principles of data assimilation underlying the Verdandi library, and how they are articulated with the modular architecture of the library. This translates -- in particular -- into the definition of standardized interfaces through which the data assimilation library interoperates with the model simulation software and the so-called observation manager. We also survey various examples of data assimilation applied to the personalization of biophysical models, in particular for cardiac modeling applications within the euHeart European project. This illustrates the power of data assimilation concepts in such novel applications, with tremendous potential in clinical diagnosis assistance

    Estimation of tissue contractility from cardiac cine-MRI using a biomechanical heart model

    Get PDF
    International audienceThe objective of this paper is to propose and assess an estimation procedure - based on data assimilation principles - well-suited to obtain some regional values of key biophysical parameters in a beating heart model, using actual Cine-MR images. The motivation is twofold: (1) to provide an automatic tool for personalizing the characteristics of a cardiac model in order to achieve predictivity in patient-specific modeling, and (2) to obtain some useful information for diagnosis purposes in the estimated quantities themselves. In order to assess the global methodology we specifically devised an animal experiment in which a controlled infarct was produced and data acquired before and after infarction, with an estimation of regional tissue contractility - a key parameter directly affected by the pathology - performed for every measured stage. After performing a preliminary assessment of our proposed methodology using synthetic data, we then demonstrate a full-scale application by first estimating contractility values associated with 6 regions based on the AHA subdivision, before running a more detailed estimation using the actual AHA segments. The estimation results are assessed by comparison with the medical knowledge of the specific infarct, and with late enhancement MR images. We discuss their accuracy at the various subdivision levels, in the light of the inherent modeling limitations and of the intrinsic information contents featured in the data
    • …
    corecore